
STklos Reference Manual
(version 0.71)

Erick Gallesio
Université de Nice - Sophia Antipolis

930 route des Colles, BP 145
F-06903 Sophia Antipolis, Cedex

France

This document was produced using the Skribe Programming Language and its ConTEXt engine.

For further information on Skribe, see http://www-sop.inria.fr/mimosa/fp/Skribe/.

Document created on November 3, 2005.

http://www-sop.inria.fr/mimosa/fp/Skribe/
http://www-sop.inria.fr/mimosa/fp/Skribe/
http://www-sop.inria.fr/mimosa/fp/Skribe/
http://www-sop.inria.fr/mimosa/fp/Skribe/
http://www-sop.inria.fr/mimosa/fp/Skribe/
http://www-sop.inria.fr/mimosa/fp/Skribe/
http://www-sop.inria.fr/mimosa/fp/Skribe/
http://www-sop.inria.fr/mimosa/fp/Skribe/

This document provides a complete list of procedures and special forms implemented in
version 0.71 of STklos. Since STklos is (nearly) compliant with the language described
in the Revised5 Report on the Algorithmic Language Scheme (aka R5RS) [12], the organi-
zation of this manual follows closely the one of this document.

STklos Reference Manual

2

Introduction 3

1 Introduction

1.1 Overview of STklos

STklos is the successor of STk [6], a Scheme interpreter which was tightly connected to
the Tk graphical toolkit [11]. STk had an object layer which was called STklos. At this
time, STk was used to denote the base Scheme interpreter and STklos was used to denote
its object layer, which was an extension. For instance, when programming a GUI application,
a user could access the widgets at the (low) Tk level, or access them using a neat hierarchy
of classes wrapped in STklos.

Since the object layer is now more closely integrated with the language, the new system has
been renamed STklos and STk is now used to designate the old system.

Compatibility with STk: STklos has been completely rewritten and as a consequence,
due to new implementation choices, old STk programs are not fully compatible with the
new system. However, these changes are very minor and adapting a STk program for the
STklos system is generally quite easy. The only programs which need heavier work are
programs which use Tk without objects, since the new preferred GUI system is now based
on GTK+ [2]. Programmers used to GUI programming using STklos classes will find that
both system, even if not identical in every points, share the same philosophy.

1.2 Lexical Conventions

1.2.1 Identifiers

In STklos, identifiers which start (or end) with a colon “:” are considered as keywords. For
instance :foo and bar: are STklos keywords, but not:key is not a keyword. See section ??
for more information

1.2.2 Comments

There are four types of comments in STklos:

• a semicolon “;” indicates the start of a comment. This kind of comment extends to
the end of the line (as described in R5RS).

• multi-lines comment use the classical Lisp convention: a comment begins with “#|” and
ends with “|#”. This form of comment is now defined by SRFI-30 (Nested Multi-line

Comments).

http://srfi.schemers.org/srfi-30/srfi-30.html

STklos Reference Manual

4 Introduction

• a sharp sign followed by a semicolon “#;” comments the next Scheme expression. This
is useful to comment a piece of code which spans multiple lines

• comments can also be introduced by “#!””. Such a comment extends to the end of
the line which introduces it. This extension is particularly useful for building STklos

scripts. On most Unix implementations, if the first line of a script looks like this:

#!/usr/local/bin/stklos -file

then the script can be started directly as if it was a binary program. STklos is loaded
behind the scene and executes the script as a Scheme program. This form is compatible
with the notation introduced in SRFI-22 (Running Scheme Scripts on Unix)Note
that, as a special case, that the sequences “#!key”, “#!optional” and “#!rest” are
respectively converted to the STklos keywords “:key”, “:optional” and “:rest”.
This permits to Scheme lambdas, which accepts keywords and optional arguments, to
be compatible with DSSSL lambdas [10].

1.2.3 Other Notations

STk accepts all the notations defined in R5RS plus

• “[]” Brackets are equivalent to parentheses. They are used for grouping and to build
lists. A list opened with a left square bracket must be closed with a right square bracket
(see section ??).

• “:” a colon at the beginning or the end of a symbol introduces a keyword. Keywords
are described in section ??.

• #n= is used to represent circular structures. The value given of n must be a number.
It is used as a label, which can be referenced later by a #n# notation (see below). The
scope of the label is the expression being read by the outermost read.

• #n# is used to reference some object previously labeled by a #n= notation; that is, #n#
represents a pointer to the object labeled exactly by #n=. For instance, the object
returned by the following expression

(let* ((a (list 1 2))
(b (cons ’x a)))

(list a b))

can also be represented in this way:

(#0=(1 2) (x . #0#))

1.3 Basic Concepts

See the original R5RS document for more informations on the basic concepts of the Scheme
Programming Language.

http://srfi.schemers.org/srfi-22/srfi-22.html

Expressions 5

2 Expressions

This chapter describes the main forms available in STklos. R5RS constructions are given
very succinctly here for reference. See the (ref :bib ”R5RS”) for a complete description.

2.1 Literal expressions

(quote <datum>) R5RS

syntax’<datum>

The quoting mechanism is identical to R5RS, except that keywords constants evaluate
”to themselves” as numerical constants, string constants, character constants, and
boolean constants

’"abc" ⇒ "abc"
"abc" ⇒ "abc"
’145932 ⇒ 145932
145932 ⇒ 145932
’#t ⇒ #t
#t ⇒ #t
:foo ⇒ :foo
’:foo ⇒ :foo

Note: R5RS requires to quote constant lists and constant vectors. This is not nec-
essary with STklos.

2.2 Procedures

(lambda <formals> <body>) STklos

syntax

A lambda expression evaluates to a procedure. STklos lambda expression have been
extended to allow a optional and keyword parameters. <formals> should have one of
the following forms:

• (<variable1> ...)
The procedure takes a fixed number of arguments; when the procedure is called,
the arguments will be stored in the bindings of the corresponding variables. This
form is identical to R5RS.

• <variable>
The procedure takes any number of arguments; when the procedure is called,
the sequence of actual arguments is converted into a newly allocated list, and

STklos Reference Manual

6 Expressions

the list is stored in the binding of the <variable>. This form is identical to
R5RS.

• (<variable1> ... <variablen> . <variablen+1>)
If a space-delimited period precedes the last variable, then the procedure takes
n or more arguments, where n is the number of formal arguments before the
period (there must be at least one). The value stored in the binding of the last
variable will be a newly allocated list of the actual arguments left over after
all the other actual arguments have been matched up against the other formal
arguments. This form is identical to R5RS.

• (<variable1 ... <variablen> [:optional ...] [:rest ...] [:key ...])

This form is specific to STklos and allows to have procedure with optional
and keyword parameters. The form :optional allows to specify optional pa-
rameters. All the parameters specified after :optional to the end of <formals>
(or until a :rest or :key) are optional parameters. An optional parameter can
declared as:

− variable: if a value is passed when the procedure is called, it will be
stored in the binding of the corresponding variable, otherwise the value #f
will be stored in it.

− (variable value): if a value is passed when the procedure is called, it
will be stored in the binding of the corresponding variable, otherwise value
will be stored in it.

− (variable value test?): if a value is passed when the procedure is
called, it will be stored in the binding of the corresponding variable, oth-
erwise value will be stored in it. Furthermore, test? will be given the
value #t if a value is passed for the given variable, otherwise test? is set
to #f

Hereafter are some examples using :optional parameters

((lambda (a b :optional c d) (list a b c d)) 1 2)
⇒ (1 2 #f #f)

((lambda (a b :optional c d) (list a b c d)) 1 2 3)
⇒ (1 2 3 #f)

((lambda (a b :optional c (d 100)) (list a b c d)) 1 2 3)
⇒ (1 2 3 100)

((lambda (a b :optional c (d #f d?)) (list a b c d d?)) 1 2
3)

⇒ (1 2 3 #f #f)

The form :rest parameter is similar to the dot notation seen before. It is used
before an identifier to collects the parameters in a single binding:

STklos Reference Manual

Expressions 7

((lambda (a :rest b) (list a b)) 1)
⇒ (1 ())

((lambda (a :rest b) (list a b)) 1 2)
⇒ (1 (2))

((lambda (a :rest b) (list a b)) 1 2 3)
⇒ (1 (2 3))

The form :key allows to use keyword parameter passing. All the parameters
specified after :key to the end of <formals> are keyword parameters. A keyword
parameter can be declared using the three forms given for optional parameters.
Here are some examples illustrating how to declare and how to use keyword
parameters:

((lambda (a :key b c) (list a b c)) 1 :c 2 :b 3)
⇒ (1 3 2)

((lambda (a :key b c) (list a b c)) 1 :c 2)
⇒ (1 #f 2)

((lambda (a :key (b 100 b?) c) (list a b c b?)) 1 :c 2)
⇒ (1 100 2 #f)

At last, here is an example showing :optional :rest and :key parameters

(define f (lambda (a :optional b :rest c :key d e)
(list a b c d e)))

(f 1) ⇒ (1 #f () #f #f)
(f 1 2) ⇒ (1 2 () #f #f)
(f 1 2 :d 3 :e 4) ⇒ (1 2 (:d 3 :e 4) 3 4)
(f 1 :d 3 :e 4) ⇒ (1 #f (:d 3 :e 4) 3 4)

(closure? obj) STklos

procedure

Returns #t if obj is a procedure created with the lambda syntax and #f otherwise.

(case-lambda <clause> ...) STklos

syntax

Each <clause> should have the form (<formals> <body>), where <formals> is a for-
mal arguments list as for lambda. Each <body> is a <tail-body>, as defined in R5RS.

A case-lambda expression evaluates to a procedure that accepts a variable num-
ber of arguments and is lexically scoped in the same manner as procedures resulting
from lambda expressions. When the procedure is called with some arguments v1 ...
vk, then the first <clause> for which the arguments agree with <formals> is selected,
where agreement is specified as for the <formals> of a lambda expression. The vari-
ables of <formals> are bound to fresh locations, the values v1 ... vk are stored in
those locations, the <body> is evaluated in the extended environment, and the results
of <body> are returned as the results of the procedure call.

It is an error for the arguments not to agree with the <formals> of any <clause>.

STklos Reference Manual

8 Expressions

This form is defined in SRFI-16 (Syntax for procedures of variable arity).

(define plus
(case-lambda
(() 0)
((x) x)
((x y) (+ x y))
((x y z) (+ (+ x y) z))
(args (apply + args))))

(plus) ⇒ 0
(plus 1) ⇒ 1
(plus 1 2 3) ⇒ 6

((case-lambda
((a) a)
((a b) (* a b)))
1 2 3) ⇒ error

2.3 Assignments

(set! <variable> <expression>) R5RS

syntax(set! (<proc> <arg> ...) <expression>)

The first form of set! is the R5RS one:

<Expression> is evaluated, and the resulting value is stored in the location to which
<variable> is bound. <Variable> must be bound either in some region enclosing
the set! expression or at top level.

(define x 2)
(+ x 1) ⇒ 3
(set! x 4) ⇒ unspecified
(+ x 1) ⇒ 5

The second form of set! is defined in SRFI-17 (Generalized set!):

This special form set! is extended so the first operand can be a procedure ap-
plication, and not just a variable. The procedure is typically one that extracts a
component from some data structure. Informally, when the procedure is called in the
first operand of set!, it causes the corresponding component to be replaced by the
second operand. For example,

(set (vector-ref x i) v)

would be equivalent to:

(vector-set! x i v)

http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-17/srfi-17.html

STklos Reference Manual

Expressions 9

Each procedure that may be used as the first operand to set! must have a corre-
sponding setter procedure. The procedure setter (see below) takes a procedure and
returns the corresponding setter procedure. So,

(set! (proc arg ...) value)

is equivalent to the call

((setter proc) arg ... value)

The result of the set! expression is unspecified.

(setter proc) R5RS

procedure

Returns the setter associated to a proc. Setters are defined in the SRFI-17 (Gen-

eralized set!) document. A setter proc, can be used in a generalized assignment, as
described in set!.

To associate s to the procedure p, use the following form:

(set! (setter p) s)

For instance, we can write

(set! (setter car) set-car!)

The following standard procedures have pre-defined setters:

(set! (car x) v) == (set-car! x v)
(set! (cdr x) v) == (set-cdr! x v)
(set! (string-ref x i) v) == (string-set! x i v)
(set! (vector-ref x i) v) == (vector-set! x i v)!
(set! (slot-ref x ’name) v) == (slot-set! x ’name v)
(set! (struct-ref x ’name) v) == (struct-set! x ’name v)

Furhermore, parameters objects are their own setter:

(real-precision) ⇒ 15
(set! (real-precision) 12)
(real-precision) ⇒ 12

2.4 Conditionals

(if <test> <consequent> <alternate>) R5RS

syntax(if <test> <consequent>)

An if expression is evaluated as follows: first, <test> is evaluated. If it yields a true
value, then <consequent> is evaluated and its value(s) is(are) returned. Otherwise

http://srfi.schemers.org/srfi-17/srfi-17.html

STklos Reference Manual

10 Expressions

<alternate> is evaluated and its value(s) is(are) returned. If <test> yields a false
value and no <alternate> is specified, then the result of the expression is void.

(if (> 3 2) ’yes ’no) ⇒ yes
(if (> 2 3) ’yes ’no) ⇒ no
(if (> 3 2)

(- 3 2)
(+ 3 2)) ⇒ 1

(cond <clause1> <clause2> ...) R5RS

syntax

In a cond, each <clause> should be of the form

(<test> <expression1> ...)

where <test> is any expression. Alternatively, a <clause> may be of the form

(<test> ⇒ <expression>)

The last <clause> may be an ”else clause,” which has the form

(else <expression1> <expression2> ...)

A cond expression is evaluated by evaluating the <test> expressions of successive
<clause>s in order until one of them evaluates to a true value When a <test> evalu-
ates to a true value, then the remaining <expression>s in its <clause> are evaluated
in order, and the result(s) of the last <expression> in the <clause> is(are) returned
as the result(s) of the entire cond expression. If the selected <clause> contains only
the <test> and no <expression>s, then the value of the <test> is returned as the
result. If the selected <clause> uses the ⇒ alternate form, then the <expression> is
evaluated. Its value must be a procedure that accepts one argument; this procedure
is then called on the value of the <test> and the value(s) returned by this procedure
is(are) returned by the cond expression.

If all <test>s evaluate to false values, and there is no else clause, then the result
of the conditional expression is void; if there is an else clause, then its <expression>s
are evaluated, and the value(s) of the last one is(are) returned.

(cond ((> 3 2) ’greater)
((< 3 2) ’less)) ⇒ greater

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) ⇒ equal

(cond ((assv ’b ’((a 1) (b 2))) ⇒ cadr)
(else #f)) ⇒ 2

STklos Reference Manual

Expressions 11

(case <key> <clause1> <clause2> ...) R5RS

syntax

In a case, each <clause> should have the form

((<datum1> ...) <expression1> <expression2> ...),

where each <datum> is an external representation of some object. All the <datum>s
must be distinct. The last <clause> may be an ”else clause,” which has the form

(else <expression1> <expression2> ...).

A case expression is evaluated as follows. <Key> is evaluated and its result is compared
against each <datum>. If the result of evaluating <key> is equivalent (in the sense of
eqv?) to a <datum>, then the expressions in the corresponding <clause> are evaluated
from left to right and the result(s) of the last expression in the <clause> is(are)
returned as the result(s) of the case expression. If the result of evaluating <key>
is different from every <datum>, then if there is an else clause its expressions are
evaluated and the result(s) of the last is(are) the result(s) of the case expression;
otherwise the result of the case expression is void.

(case (* 2 3)
((2 3 5 7) ’prime)
((1 4 6 8 9) ’composite)) ⇒ composite

(case (car ’(c d))
((a) ’a)
((b) ’b)) ⇒ void

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else ’consonant)) ⇒ consonant

(and <test1> ...) R5RS

syntax

The <test> expressions are evaluated from left to right, and the value of the first
expression that evaluates to a false value is returned. Any remaining expressions are
not evaluated. If all the expressions evaluate to true values, the value of the last
expression is returned. If there are no expressions then #t is returned.

(and (= 2 2) (> 2 1)) ⇒ #t
(and (= 2 2) (< 2 1)) ⇒ #f
(and 1 2 ’c ’(f g)) ⇒ (f g)
(and) ⇒ #t

(or <test1> ...) R5RS

syntax

The <test> expressions are evaluated from left to right, and the value of the first
expression that evaluates to a true value is returned. Any remaining expressions
are not evaluated. If all expressions evaluate to false values, the value of the last
expression is returned. If there are no expressions then #f is returned.

STklos Reference Manual

12 Expressions

(or (= 2 2) (> 2 1)) ⇒ #t
(or (= 2 2) (< 2 1)) ⇒ #t
(or #f #f #f) ⇒ #f
(or (memq ’b ’(a b c))

(/ 3 0)) ⇒ (b c)

(when <test> <expression1> <expression2> ...) STklos

syntax

If the <test> expression yields a true value, the <expression>s are evaluated from
left to right and the value of the last <expression> is returned. Otherwise, when
returns void.

(unless <test> <expression1> <expression2> ...) STklos

syntax

If the <test> expression yields a false value, the <expression>s are evaluated from
left to right and the value of the last <expression> is returned. Otherwise, unless
returns void.

2.5 Binding Constructs

The three binding constructs let, let*, and letrec are available in STklos. These constructs
differ in the regions they establish for their variable bindings. In a let expression, the initial
values are computed before any of the variables become bound; in a let* expression, the
bindings and evaluations are performed sequentially; while in a letrec expression, all the
bindings are in effect while their initial values are being computed, thus allowing mutually
recursive definitions.
STklos also provides a fluid-let form which is described below.

(let <bindings> <body>) R5RS

syntax(let <variable> <bindings> <body>)

In a let, <bindings> should have the form

((<variable1> <init1>) ...)

where each <init> is an expression, and <body> should be a sequence of one or more
expressions. It is an error for a <variable> to appear more than once in the list of
variables being bound.

The <init>s are evaluated in the current environment (in some unspecified order),
the <variable>s are bound to fresh locations holding the results, the <body> is eval-
uated in the extended environment, and the value(s) of the last expression of <body>
is(are) returned. Each binding of a <variable> has <body> as its region.

STklos Reference Manual

Expressions 13

(let ((x 2) (y 3))
(* x y)) ⇒ 6

(let ((x 2) (y 3))
(let ((x 7)

(z (+ x y)))
(* z x))) ⇒ 35

The second form of let, which is generally called a named let, is a variant on the syntax
of let which provides a more general looping construct than do (@pxref{do}) and may
also be used to express recursions. It has the same syntax and semantics as ordinary
let except that <variable> is bound within <body> to a procedure whose formal
arguments are the bound variables and whose body is <body>. Thus the execution of
<body> may be repeated by invoking the procedure named by <variable>.

(let loop ((numbers ’(3 -2 1 6 -5))
(nonneg ’())
(neg ’()))

(cond ((null? numbers) (list nonneg neg))
((>= (car numbers) 0)

(loop (cdr numbers)
(cons (car numbers) nonneg)
neg))

((< (car numbers) 0)
(loop (cdr numbers)

nonneg
(cons (car numbers) neg)))))

⇒ ((6 1 3) (-5 -2))

(let* <bindings> <body>) R5RS

syntax

In a let*, <bindings> should have the same form as in a let (however, a <variable>
can appear more than once in the list of variables being bound).

Let* is similar to let, but the bindings are performed sequentially from left to right,
and the region of a binding indicated by

(<variable> <init>)

is that part of the let* expression to the right of the binding. Thus the second binding
is done in an environment in which the first binding is visible, and so on.

(let ((x 2) (y 3))
(let* ((x 7)

(z (+ x y)))
(* z x))) ⇒ 70

(letrec <bindings> <body>) R5RS

syntax

STklos Reference Manual

14 Expressions

<bindings> should have the form as in let.

The <variable>s are bound to fresh locations holding undefined values, the <init>s
are evaluated in the resulting environment (in some unspecified order), each <variable>
is assigned to the result of the corresponding <init>, the <body> is evaluated in the
resulting environment, and the value(s) of the last expression in <body> is(are) re-
turned. Each binding of a <variable> has the entire letrec expression as its region,
making it possible to define mutually recursive procedures.

(letrec ((even? (lambda (n)
(if (zero? n)

#t
(odd? (- n 1)))))

(odd? (lambda (n)
(if (zero? n)

#f
(even? (- n 1))))))

(even? 88))
⇒ #t

(fluid-let <bindings> <body>) STklos

syntax

The <bindings> are evaluated in the current environment, in some unspecified order,
the current values of the variables present in <bindings> are saved, and the new
evaluated values are assigned to the <bindings> variables. Once this is done, the
expressions of <body> are evaluated sequentially in the current environment; the value
of the last expression is the result of fluid-let. Upon exit, the stored variables values
are restored. An error is signalled if any of the <bindings> variable is unbound.

(let* ((a ’out)
(f (lambda () a)))

(list (f)
(fluid-let ((a ’in)) (f))
(f))) ⇒ (out in out)

When the body of a fluid-let is exited by invoking a continuation, the new variable
values are saved, and the variables are set to their old values. Then, if the body is
reentered by invoking a continuation, the old values are saved and new values are
restored. The following example illustrates this behavior

(let ((cont #f)
(l ’())
(a ’out))

(set! l (cons a l))
(fluid-let ((a ’in))
(set! cont (call-with-current-continuation (lambda (k) k)))
(set! l (cons a l)))

(set! l (cons a l))

(if cont (cont #f) l)) ⇒ (out in out in out)

STklos Reference Manual

Expressions 15

2.6 Sequencing

(begin <expression1> <expression2> ...) R5RS

syntax

The <expression>s are evaluated sequentially from left to right, and the value(s) of
the last <expression> is(are) returned. This expression type is used to sequence side
effects such as input and output.

(define x 0)

(begin (set! x 5)
(+ x 1)) ⇒ 6

(begin (display "4 plus 1 equals ")
(display (+ 4 1))) a 4 plus 1 equals 5

⇒ void

2.7 Iterations

(do [[<var1> <init1> <step1>] ...] [<test> <expr> ...] <command> ...) R5RS

syntax

Do is an iteration construct. It specifies a set of variables to be bound, how they are
to be initialized at the start, and how they are to be updated on each iteration. When
a termination condition is met, the loop exits after evaluating the <expr>s.

Do expressions are evaluated as follows: The <init> expressions are evaluated (in
some unspecified order), the <var>s are bound to fresh locations, the results of the
<init> expressions are stored in the bindings of the <var>s, and then the iteration
phase begins.

Each iteration begins by evaluating <test>; if the result is false then the <command>
expressions are evaluated in order for effect, the <step> expressions are evaluated in
some unspecified order, the <var>s are bound to fresh locations, the results of the
<step>s are stored in the bindings of the <var>s, and the next iteration begins.

If <test> evaluates to a true value, then the <expr>s are evaluated from left to
right and the value(s) of the last <expr> is(are) returned. If no <expr>s are present,
then the value of the do expression is void.

The region of the binding of a <var> consists of the entire do expression except for the
<init>s. It is an error for a <var> to appear more than once in the list of do variables.

A <step> may be omitted, in which case the effect is the same as if

(<var> <init> <var>)

had been written.

STklos Reference Manual

16 Expressions

(do ((vec (make-vector 5))
(i 0 (+ i 1)))
((= i 5) vec)

(vector-set! vec i i)) ⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))
(do ((x x (cdr x))

(sum 0 (+ sum (car x))))
((null? x) sum))) ⇒ 25

(dotimes [var count] <expression1> <expression2> ...) STklos

syntax(dotimes [var count result] <expression1> <expression2> ...)

Evaluates the count expression, which must return an integer and then evaluates
the <expression>s once for each integer from zero (inclusive) to count (exclusive),
in order, with the symbol var bound to the integer; if the value of count is zero
or negative, then the <expression>s are not evaluated. When the loop completes,
result is evaluated and its value is returned as the value of the dotimes construction.
If result is omitted, dotimes result is void.

(let ((l ’()))
(dotimes (i 4 l)

(set! l (cons i l)))) ⇒ (3 2 1 0)

(while <test> <expression1> <expression2> ...) STklos

syntax

While evaluates the <expression>s until <test> returns a false value. The value
returned by this form is void.

(until <test> <expression1> <expression2> ...) STklos

syntax

Until evaluates the <expression>s until <while> returns a false value. The value
returned by this form is void.

2.8 Delayed Evaluation

(delay <expression>) R5RS

procedure

The delay construct is used together with the procedure force to implement lazy

evaluation or call by need. (delay <expression>) returns an object called a promise

which at some point in the future may be asked (by the force procedure) to evaluate
<expression>, and deliver the resulting value. The effect of <expression> returning
multiple values is unpredictable.

See the description of force (@pxref{force}) for a more complete description of delay.

(promise? obj) STklos

procedure

Returns #t if obj is a promise, otherwise returns #f.

STklos Reference Manual

Expressions 17

2.9 Quasiquotation

(quasiquote <template>) R5RS

syntax‘<template>

”Backquote” or ”quasiquote” expressions are useful for constructing a list or vector
structure when most but not all of the desired structure is known in advance. If
no commas appear within the <template>, the result of evaluating ‘<template> is
equivalent to the result of evaluating ’<template>. If a comma appears within the
<template>, however, the expression following the comma is evaluated (”unquoted”)
and its result is inserted into the structure instead of the comma and the expression.
If a comma appears followed immediately by an at-sign (@), then the following ex-
pression must evaluate to a list; the opening and closing parentheses of the list are
then ”stripped away” and the elements of the list are inserted in place of the comma
at-sign expression sequence. A comma at-sign should only appear within a list or
vector <template>.

‘(list ,(+ 1 2) 4) ⇒ (list 3 4)
(let ((name ’a)) ‘(list ,name ’,name))

⇒ (list a (quote a))
‘(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)

⇒ (a 3 4 5 6 b)
‘((foo ,(- 10 3)) ,@(cdr ’(c)) .)

⇒ ((foo 7) . cons)
‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

⇒ #(10 5 2 4 3 8)

Quasiquote forms may be nested. Substitutions are made only for unquoted compo-
nents appearing at the same nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquotation, and decreases by one
inside each unquotation.

‘(a ‘(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)
⇒ (a ‘(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)
(name2 ’y))

‘(a ‘(b ,,name1 ,’,name2 d) e))
⇒ (a ‘(b ,x ,’y d) e)

The two notations ‘<template> and (quasiquote <template>) are identical in all
respects. ,<expression> is identical to (unquote <expression>), and ,@<expression>
is identical to (unquote-splicing <expression>).

2.10 Macros

STklos supports hygienic macros such as the ones defined in R5RS as well as low level macros.

STklos Reference Manual

18 Expressions

Low level macros are defined with define-macro whereas R5RS macros are defined with
define-syntax1. Hygienic macros use the implementation called Macro by Example (Eu-
gene Kohlbecker, R4RS) done by Dorai Sitaram. This implementation generates low level
STklos macros. This implementation of hygienic macros is not expensive.

The major drawback of this implementation is that the macros are not referentially trans-

parent (see section ‘Macros’ in R4RS for details). Lexically scoped macros (i.e., let-syntax
and letrec-syntax are not supported). In any case, the problem of referential transparen-
cy gains poignancy only when let-syntax and letrec-syntax are used. So you will not
be courting large-scale disaster unless you’re using system-function names as local variables
with unintuitive bindings that the macro can’t use. However, if you must have the full R5RS
macro functionality, you can do

(require "full-syntax")

to have access to the more featureful (but also more expensive) versions of syntax-rules.
Requiring "full-syntax" loads the version 2.1 of an implementation of hygienic macros by
Robert Hieb and R. Kent Dybvig.

(define-macro (<name> <formals>) <body>) STklos

syntax(define-macro <name> (lambda <formals> <body>))

define-macro can be used to define low-level macro (i.e. non hygienic macros). This
form is similar to the defmacro form of Common Lisp.

(define-macro (incr x) ‘(set! ,x (+ ,x 1)))
(let ((a 1)) (incr a) a) ⇒ 2

(define-macro (when test . body)
‘(if ,test ,@(if (null? (cdr body)) body ‘((begin ,@body)))))

(macro-expand ’(when a b)) ⇒ (if a b)
(macro-expand ’(when a b c d))

⇒ (if a (begin b c d))

(define-macro (my-and . exprs)
(cond
((null? exprs) #t)
((= (length exprs) 1) (car exprs))
(else ‘(if ,(car exprs)

(my-and ,@(cdr exprs))
#f))))

(macro-expand ’(my-and a b c))
⇒ (if a (my-and b c) #f)

(define-syntax <identifier> <transformer-spec>) R5RS

syntax

<Define-syntax> extends the top-level syntactic environment by binding the <identifier>
to the specified transformer.

Documentation about hygienic macros has been stolen in the SLIB manual1

STklos Reference Manual

Expressions 19

Note: <transformer-spec> should be an instance of syntax-rules.

(define-syntax let*
(syntax-rules ()
((let* () body1 body2 ...)
(let () body1 body2 ...))
((let* ((name1 val1) (name2 val2) ...)

body1 body2 ...)
(let ((name1 val1))
(let* ((name2 val2) ...)
body1 body2 ...))))

(syntax-rules <literals> <syntax-rule> ...) R5RS

syntax

<literals> is a list of identifiers, and each <syntax-rule> should be of the form

(pattern template)

An instance of <syntax-rules> produces a new macro transformer by specifying a
sequence of hygienic rewrite rules. A use of a macro whose name is associated with a
transformer specified by <syntax-rules> is matched against the patterns contained in
the <syntax-rules>, beginning with the leftmost syntax-rule. When a match is found,
the macro use is transcribed hygienically according to the template.

Each pattern begins with the name for the macro. This name is not involved in
the matching and is not considered a pattern variable or literal identifier.

Note: For a complete description of the Scheme pattern language, refer to R5RS.

(let-syntax <bindings> <body>) R5RS

syntax

<Bindings> should have the form

((<keyword> <transformer spec>) ...)

Each <keyword> is an identifier, each <transformer spec> is an instance of syntax-
rules, and <body> should be a sequence of one or more expressions. It is an error for
a <keyword> to appear more than once in the list of keywords being bound.

The <body> is expanded in the syntactic environment obtained by extending the
syntactic environment of the let-syntax expression with macros whose keywords are
the <keyword>s, bound to the specified transformers. Each binding of a <keyword>
has <body> as its region.

Note: let-syntax is available only after having required the file "full-syntax".

STklos Reference Manual

20 Expressions

(let-syntax ((when (syntax-rules ()
((when test stmt1 stmt2 ...)
(if test

(begin stmt1
stmt2 ...))))))
(let ((if #t))
(when if (set! if ’now))
if)) ⇒ now

(let ((x ’outer))
(let-syntax ((m (syntax-rules () ((m) x))))
(let ((x ’inner))
(m)))) ⇒ outer

(letrec-syntax <bindings> <body>) R5RS

syntax

Syntax of letrec-syntax is the same as for let-syntax.

The <body> is expanded in the syntactic environment obtained by extending the syn-
tactic environment of the letrec-syntax expression with macros whose keywords are
the <keyword>s, bound to the specified transformers. Each binding of a <keyword>
has the <bindings> as well as the <body> within its region, so the transformers can
transcribe expressions into uses of the macros introduced by the letrec-syntax ex-
pression.

Note: letrec-syntax is available only after having required the file "full-syntax".

(letrec-syntax
((my-or (syntax-rules ()

((my-or) #f)
((my-or e) e)
((my-or e1 e2 ...)
(let ((temp e1))
(if temp

temp
(my-or e2 ...)))))))

(let ((x #f)
(y 7)
(temp 8)
(let odd?)
(if even?))

(my-or x
(let temp)
(if y)
y))) ⇒ 7

(macro-expand form) STklos

procedure

STklos Reference Manual

Expressions 21

Returns the macro expansion of form if it is a macro call, otherwise form is returned
unchanged.

(define-macro (incr x) ‘(set! ,x (+ ,x 1)))
(macro-expand ’(incr foo)) ⇒ (set! foo (+ foo 1))
(macro-expand ’(car bar)) ⇒ (car bar)

STklos Reference Manual

22

Program structure 23

3 Program structure

R5RS discusses how to structure programs. Everything which is defined in Section 5 of R5RS
applies also to STklos. To make things shorter, this aspects will not be described here (see
R5RS for complete information).

STklos modules can be used to organize a program into separate environments (or name

spaces). Modules provide a clean way to organize and enforce the barriers between the
components of a program.

STklos provides a simple module system which is largely inspired from the one of Tung and
Dybvig exposed in [14]. As their modules system, STklos modules are defined to be easily
used in an interactive environment.

(define-module <name> <expr1> <expr2> ...) STklos

syntax

Define-module evaluates the expressions <expr1>, <expr2> ... which constitute the
body of the module <name> in the environment of that module. Name must be a
valid symbol. If this symbol has not already been used to define a module, a new
module, named name, is created. Otherwise, the expressions <expr1>, <expr2> ...
are evaluated in the environment of the (old) module <name>2. Definitions done in
a module are local to the module and do not interact with the definitions in other
modules. Consider the following definitions,

(define-module M1
(define a 1))

(define-module M2
(define a 2)
(define b (* 2 x)))

Here, two modules are defined and they both bind the symbol a to a value. Howev-
er, since a has been defined in two distinct modules they denote two different locations.

The STklos module, which is predefined, is a special module which contains all the
global variables of a R5RS program. A symbol defined in the STklos module, if not
hidden by a local definition, is always visible from inside a module. So, in the previous
exemple, the x symbol refers the x symbol defined in the STklos module.

The result of define-module is void.

In fact define-module on a given name defines a new module only the first time it is invoked on this name.2

By this way, interactively reloading a module does not define a new entity, and the other modules which use

it are not altered.

STklos Reference Manual

24 Program structure

(current-module) STklos

procedure

Returns the current module.

(define-module M
(display

(cons (eq? (current-module) (find-module ’M))
(eq? (current-module) (find-module ’STklos)))))

a (#t . #f)

(find-module name) STklos

procedure(find-module name default)

STklos modules are first class objects and find-module returns the module associ-
ated to name if it exists. If there is no module associated to name, an error is signaled
if no default is provided, otherwise find-module returns default.

(module? object) STklos

procedure

Returns #t if object is a module and #f otherwise.

(module? (find-module ’STklos)) ⇒ #t
(module? ’STklos) ⇒ #f
(module? 123 ’no) ⇒ no

(export <symbol1> <symbol2> ...) STklos

syntax

Specifies the symbols which are exported (i.e. visible) outside the current module.
By default, symbols defined in a module are not visible outside this module, excepted
if they appear in an export clause.

If several export clauses appear in a module, the set of exported symbols is de-
termined by “unionizing” symbols exported in all the export clauses.

The result of export is void.

(import <module1> <module2> ...) STklos

syntax

Specifies the modules which are imported by the current module. Importing a module
makes the symbols it exports visible to the importer, if not hidden by local definitions.
When a symbol is exported by several of the imported modules, the location denoted
by this symbol in the importer module correspond to the one of the first module in
the list

(<module1> <module2> ...)

which exports it.

STklos Reference Manual

Program structure 25

If several import clauses appear in a module, the set of imported modules is de-
termined by appending the various list of modules in their apparition order.

(define-module M1
(export a b)
(define a ’M1-a)
(define b ’M1-b))

(define-module M2
(export b c)
(define b ’M2-b)
(define c ’M2-c))

(define-module M3
(import M1 M2)
(display (list a b c))) a (m1-a m1-b m2-c)

Note: Importations are not transitive: when the module C imports the module B

which is an importer of module A the symbols of A are not visible from C, except by
explicitly importing the A module from C.

Note: The module STklos, which contains the global variables is always implic-
itly imported from a module. Furthermore, this module is always placed at the end
of the list of imported modules.

(select-module <name>) STklos

syntax

Changes the value of the current module to the module with the given name. The ex-
pressions evaluated after select-module will take place in module name environment.
Module name must have been created previously by a define-module. The result of
select-module is void. Select-module is particularly useful when debugging since
it allows to place toplevel evaluation in a particular module. The following transcript
shows an usage of select-module.3:

stklos> (define foo 1)
stklos> (define-module bar

(define foo 2))
stklos> foo
1
stklos> (select-module bar)
bar> foo
2
bar> (select-module stklos)
stklos>

(symbol-value symbol module) STklos

procedure(symbol-value symbol module default)

This transcript uses the default toplevel loop which displays the name of the current module in the evaluator3

prompt.

STklos Reference Manual

26 Program structure

Returns the value bound to symbol in module. If symbol is not bound, an error is
signaled if no default is provided, otherwise symbol-value returns default.

(symbol-value* symbol module) STklos

procedure(symbol-value* symbol module default)

Returns the value bound to symbol in module. If symbol is not bound, an error is
signaled if no default is provided, otherwise symbol-value returns default.

Note that this function searches the value of symbol in module and all the mod-
ules it imports whereas symbol-value searches only in module.

(module-name module) STklos

procedure

Returns the name (a symbol) associated to a module.

(module-imports module) STklos

procedure

Returns the list of modules that module imports.

(module-exports module) STklos

procedure

Returns the list of symbols exported by module. Note that this function returns the
list of symbols given in the module export clause and that some of these symbols can
be not yet defined.

(module-symbols module) STklos

procedure

Returns the list of symbols already defined in module.

(all-modules) STklos

procedure

Returns the list of all the living modules.

(in-module mod s) STklos

syntax(in-module mod s default)

This form returns the value of symbol with name s in the module with name mod. If
this symbol is not bound, an error is signaled if no default is provided, otherwise
in-module returns default. Note that the value of s is searched in mod and all the
modules it imports.

This form is in fact a shortcut. In effect,

(in-module my-module foo)

is equivalent to

(symbol-value* ’foo (find-module ’my-module))

Standard Procedures 27

4 Standard Procedures

4.1 Equivalence predicates

A predicate is a procedure that always returns a boolean value (#t or #f). An equivalence
predicate is the computational analogue of a mathematical equivalence relation (it is sym-
metric, reflexive, and transitive). Of the equivalence predicates described in this section,
eq? is the finest or most discriminating, and equal? is the coarsest. Eqv? is slightly less
discriminating than eq?.

(eqv? obj1 obj2) R5RS

procedure

The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns
#t if obj1 and obj2 should normally be regarded as the same object. This relation
is left slightly open to interpretation, but the following partial specification of eqv?
holds for all implementations of Scheme.

The eqv? procedure returns #t if:

• obj1 and obj2 are both #t or both #f.

• obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)
(symbol->string obj2))

⇒ #t

Note: This assumes that neither obj1 nor obj2 is an ”uninterned symbol”.

• obj1 and obj2 are both keywords and

(string=? (keyword->string obj1)
(keyword->string obj2))

⇒ #t

• obj1 and obj2 are both numbers, are numerically equal (see -), and are either
both exact or both inexact.

• obj1 and obj2 are both characters and are the same character according to the
char=? procedure (see char–).

• both obj1 and obj2 are the empty list.

STklos Reference Manual

28 Standard Procedures

• obj1 and obj2 are pairs, vectors, or strings that denote the same locations in
the store.

• obj1 and obj2 are procedures whose location tags are equal.

Note: STklos extends R5RS eqv? to take into account the keyword type.

Here are some examples:

(eqv? ’a ’a) ⇒ #t
(eqv? ’a ’b) ⇒ #f
(eqv? 2 2) ⇒ #t
(eqv? :foo :foo) ⇒ #t
(eqv? :foo :bar) ⇒ #f
(eqv? ’() ’()) ⇒ #t
(eqv? 100000000 100000000) ⇒ #t
(eqv? (cons 1 2) (cons 1 2)) ⇒ #f
(eqv? (lambda () 1)

(lambda () 2)) ⇒ #f
(eqv? #f ’nil) ⇒ #f
(let ((p (lambda (x) x)))
(eqv? p p)) ⇒ #t

The following examples illustrate cases in which the above rules do not fully specify
the behavior of eqv?. All that can be said about such cases is that the value returned
by eqv? must be a boolean.

(eqv? "" "") ⇒ unspecified
(eqv? ’#() ’#()) ⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) ⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) ⇒ unspecified

Note: In fact, the value returned by STklos depends of the way code is entered and
can yield #t in some cases and #f in others.

See R5RS for more details on eqv?.

(eq? obj1 obj2) R5RS

procedure

Eq? is similar to eqv? except that in some cases it is capable of discerning distinctions
finer than those detectable by eqv?.

Eq? and eqv? are guaranteed to have the same behavior on symbols, keywords,
booleans, the empty list, pairs, procedures, and non-empty strings and vectors. Eq?’s
behavior on numbers and characters is implementation-dependent, but it will always
return either true or false, and will return true only when eqv? would also return
true. Eq? may also behave differently from eqv? on empty vectors and empty strings.

STklos Reference Manual

Standard Procedures 29

Note: STklos extends R5RS eq? to take into account the keyword type.

Note: In STklos, comparison of character returns #t for identical characters and
#f otherwise.

(eq? ’a ’a) ⇒ #t
(eq? ’(a) ’(a)) ⇒ unspecified
(eq? (list ’a) (list ’a)) ⇒ #f
(eq? "a" "a") ⇒ unspecified
(eq? "" "") ⇒ unspecified
(eq? :foo :foo) ⇒ #t
(eq? :foo :bar) ⇒ #f
(eq? ’() ’()) ⇒ #t
(eq? 2 2) ⇒ unspecified
(eq? #\A #\A) ⇒ #t (unspecified in R5RS)
(eq? car car) ⇒ #t
(let ((n (+ 2 3)))
(eq? n n)) ⇒ #t (unspecified in R5RS)

(let ((x ’(a)))
(eq? x x)) ⇒ #t

(let ((x ’#()))
(eq? x x)) ⇒ #t

(let ((p (lambda (x) x)))
(eq? p p)) ⇒ #t

(eq? :foo :foo) ⇒ #t
(eq? :bar bar:) ⇒ #t
(eq? :bar :foo) ⇒ #f

(equal? obj1 obj2) R5RS

procedure

Equal? recursively compares the contents of pairs, vectors, and strings, applying
eqv? on other objects such as numbers and symbols. A rule of thumb is that objects
are generally equal? if they print the same. Equal? may fail to terminate if its
arguments are circular data structures.

(equal? ’a ’a) ⇒ #t
(equal? ’(a) ’(a)) ⇒ #t
(equal? ’(a (b) c)

’(a (b) c)) ⇒ #t
(equal? "abc" "abc") ⇒ #t
(equal? 2 2) ⇒ #t
(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) ⇒ #t

4.2 Numbers

R5RS description of numbers is quite long and will not be given here. STklos support the
full number tower as described in R5RS; see this document for a complete description.

STklos Reference Manual

30 Standard Procedures

STklos extends the number syntax of R5RS with the following inexact numerical constants:
+inf.0 (infinity), -inf.0 (negative infinity), +nan.0 (not a number), and -nan.0 (same as
+nan.0).

(number? obj) R5RS

procedure(complex? obj)
(real? obj)
(rational? obj)
(integer? obj)

These numerical type predicates can be applied to any kind of argument, including
non-numbers. They return #t if the object is of the named type, and otherwise they
return #f. In general, if a type predicate is true of a number then all higher type
predicates are also true of that number. Consequently, if a type predicate is false of
a number, then all lower type predicates are also false of that number.

If z is an inexact complex number, then (real? z) is true if and only if (zero?
(imag-part z)) is true. If x is an inexact real number, then (integer? x) is true
if and only if (and (finite? x) (= x (round x)))

(complex? 3+4i) ⇒ #t
(complex? 3) ⇒ #t
(real? 3) ⇒ #t
(real? -2.5+0.0i) ⇒ #t
(real? #e1e10) ⇒ #t
(rational? 6/10) ⇒ #t
(rational? 6/3) ⇒ #t
(integer? 3+0i) ⇒ #t
(integer? 3.0) ⇒ #t
(integer? 3.2) ⇒ #f
(integer? 8/4) ⇒ #t
(integer? "no") ⇒ #f
(complex? +inf.0) ⇒ #t
(real? -inf.0) ⇒ #t
(rational? +inf.0) ⇒ #f
(integer? -inf.0) ⇒ #f

(exact? z) R5RS

procedure(inexact? z)

These numerical predicates provide tests for the exactness of a quantity. For any
Scheme number, precisely one of these predicates is true.

(bignum? x) STklos

procedure

This predicates returns #t if x is an integer number too large to be represented with
a native integer.

STklos Reference Manual

Standard Procedures 31

(bignum? (expt 2 300)) ⇒ #t (very likely)
(bignum? 12) ⇒ #f
(bignum? "no") ⇒ #f

(= z1 z2 z3 ...) R5RS

procedure(< x1 x2 x3 ...)
(> x1 x2 x3 ...)
(<= x1 x2 x3 ...)
(>= x1 x2 x3 ...)

These procedures return #t if their arguments are (respectively): equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically
nonincreasing.

(= +inf.0 +inf.0) ⇒ #t
(= -inf.0 +inf.0) ⇒ #f
(= -inf.0 -inf.0) ⇒ #t

For any finite real number x:

(< -inf.0 x +inf.0) ⇒ #t
(> +inf.0 x -inf.0) ⇒ #t

(finite? z) R5RS

procedure(infinite? z)
(zero? z)
(positive? x)
(negative? x)
(odd? n)
(even? n)

These numerical predicates test a number for a particular property, returning #t or
#f.

(positive? +inf.0) =⇒ #t
(negative? -inf.0) =⇒ #t
(finite? -inf.0) =⇒ #f
(infinite? +inf.0) =⇒ #t

(max x1 x2 ...) R5RS

procedure(min x1 x2 ...)

These procedures return the maximum or minimum of their arguments.

STklos Reference Manual

32 Standard Procedures

(max 3 4) ⇒ 4 ; exact

(max 3.9 4) ⇒ 4.0 ; inexact

For any real number x:

(max +inf.0 x) ⇒ +inf.0
(min -inf.0 x) ⇒ -inf.0

Note: If any argument is inexact, then the result will also be inexact

(+ z1 ...) R5RS

procedure(* z1 ...)

These procedures return the sum or product of their arguments.

(+ 3 4) ⇒ 7
(+ 3) ⇒ 3
(+) ⇒ 0
(+ +inf.0 +inf.0) ⇒ +inf.0
(+ +inf.0 -inf.0) ⇒ +nan.0
(* 4) ⇒ 4
(*) ⇒ 1
(* 5 +inf.0) ⇒ +inf.0
(* -5 +inf.0) ⇒ -inf.0
(* +inf.0 +inf.0) ⇒ +inf.0
(* +inf.0 -inf.0) ⇒ -inf.0
(* 0 +inf.0) ⇒ +nan.0

Note: For any finite number z:

(+ +inf.0 z) ⇒ +inf.0
(+ -inf.0 z) ⇒ -inf.0

(- z) R5RS

procedure(- z1 z2)
(/ z)
(/ z1 z2 ...)

With two or more arguments, these procedures return the difference or quotient of
their arguments, associating to the left. With one argument, however, they return
the additive or multiplicative inverse of their argument.

STklos Reference Manual

Standard Procedures 33

(- 3 4) ⇒ -1
(- 3 4 5) ⇒ -6
(- 3) ⇒ -3
(- +inf.0 +inf.0) ⇒ +nan.0
(/ 3 4 5) ⇒ 3/20
(/ 3) ⇒ 1/3
(/ 0.0) ⇒ +inf.0
(/ 0) ⇒ error (division by 0)

(abs x) R5RS

procedure

Abs returns the absolute value of its argument.

(abs -7) ⇒ 7
(abs -inf.0) ⇒ +inf.0

(quotient n1 n2) R5RS

procedure(remainder n1 n2)
(modulo n1 n2)

These procedures implement number-theoretic (integer) division. n2 should be non-
zero. All three procedures return integers.

If n1/n2 is an integer:

(quotient n1 n2) ⇒ n1/n2
(remainder n1 n2) ⇒ 0
(modulo n1 n2) ⇒ 0

If n1/n2 is not an integer:

(quotient n1 n2) ⇒ nq
(remainder n1 n2) ⇒ nr
(modulo n1 n2) ⇒ nm

where nq is n1/n2 rounded towards zero, 0 < abs(nr) < abs(n2), 0 < abs(nm) < abs(n2),
nr and nm differ from n1 by a multiple of n2, nr has the same sign as n1, and nm has
the same sign as n2.

From this we can conclude that for integers n1 and n2 with n2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))
(remainder n1 n2))) ⇒ #t

provided all numbers involved in that computation are exact.

STklos Reference Manual

34 Standard Procedures

(modulo 13 4) ⇒ 1
(remainder 13 4) ⇒ 1

(modulo -13 4) ⇒ 3
(remainder -13 4) ⇒ -1

(modulo 13 -4) ⇒ -3
(remainder 13 -4) ⇒ 1

(modulo -13 -4) ⇒ -1
(remainder -13 -4) ⇒ -1

(remainder -13 -4.0) ⇒ -1.0 ; inexact

(gcd n1 ...) R5RS

procedure(lcm n1 ...)

These procedures return the greatest common divisor or least common multiple of
their arguments. The result is always non-negative.

(gcd 32 -36) ⇒ 4
(gcd) ⇒ 0
(lcm 32 -36) ⇒ 288
(lcm 32.0 -36) ⇒ 288.0 ; inexact

(lcm) ⇒ 1

(numerator q) R5RS

procedure(denominator q)

These procedures return the numerator or denominator of their argument; the result
is computed as if the argument was represented as a fraction in lowest terms. The
denominator is always positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) ⇒ 3
(denominator (/ 6 4)) ⇒ 2
(denominator
(exact->inexact (/ 6 4))) ⇒ 2.0

(floor x) R5RS

procedure(ceiling x)
(truncate x)
(round x)

These procedures return integers. Floor returns the largest integer not larger than x.
Ceiling returns the smallest integer not smaller than x. Truncate returns the integer
closest to x whose absolute value is not larger than the absolute value of x. Round re-
turns the closest integer to x, rounding to even when x is halfway between two integers.

Rationale: Round rounds to even for consistency with the default rounding mode

STklos Reference Manual

Standard Procedures 35

specified by the IEEE floating point standard.

Note: If the argument to one of these procedures is inexact, then the result will
also be inexact. If an exact value is needed, the result should be passed to the
inexact->exact procedure.

(floor -4.3) ⇒ -5.0
(ceiling -4.3) ⇒ -4.0
(truncate -4.3) ⇒ -4.0
(round -4.3) ⇒ -4.0

(floor 3.5) ⇒ 3.0
(ceiling 3.5) ⇒ 4.0
(truncate 3.5) ⇒ 3.0
(round 3.5) ⇒ 4.0 ; inexact

(round 7/2) ⇒ 4 ; exact

(round 7) ⇒ 7

(rationalize x y) R5RS

procedure

Rationalize returns the simplest rational number differing from x by no more than y.
A rational number r1 is simpler than another rational number r2 if r1 = p1/q1 and
r2 = p2/q2 (in lowest terms) and abs(p1) <= abs(p2) and abs(q1) <= abs(q2). Thus
3/5 is simpler than 4/7. Although not all rationals are comparable in this ordering
(consider 2/7 and 3/5) any interval contains a rational number that is simpler than
every other rational number in that interval (the simpler 2/5 lies between 2/7 and
3/5). Note that 0 = 0/1 is the simplest rational of all.

(rationalize
(inexact->exact .3) 1/10) ⇒ 1/3 ; exact

(rationalize .3 1/10) ⇒ #i1/3 ; inexact

(exp z) R5RS

procedure(log z)
(sin z)
(cos z)
(tan z)
(asin z)
(acos z)
(atan z)
(atan y x)

These procedures compute the usual transcendental functions. Log computes the
natural logarithm of z (not the base ten logarithm). Asin, acos, and atan compute
arcsine, arccosine, and arctangent, respectively. The two-argument variant of atan
computes

(angle (make-rectangular x y))

STklos Reference Manual

36 Standard Procedures

When it is possible these procedures produce a real result from a real argument.

(sqrt z) R5RS

procedure

Returns the principal square root of z. The result will have either positive real part,
or zero real part and non-negative imaginary part.

(expt z1 z2) R5RS

procedure

Returns z1 raised to the power z2.

Note: 0z is 1 if z = 0 and 0 otherwise.

(make-rectangular x1 x2) R5RS

procedure(make-polar x3 x)
(real-part z)
(imag-part z)
(magnitude z)
(angle z)

If x1, x2, x3, and x4 are real numbers and z is a complex number such that

z = x1 + x2.i = x3 . ei.x4

Then

(make-rectangular x1 x2) ⇒ z
(make-polar x3 x4) ⇒ z
(real-part z) ⇒ x1
(imag-part z) ⇒ x2
(magnitude z) ⇒ abs(x3)
(angle z) ⇒ xa

where -π < xa <= π with xa = x4 + 2πn for some integer n.

(angle +inf.0) ⇒ 0.0
(angle -inf.0) ⇒ 3.14159265358979

Note: Magnitude is the same as abs for a real argument.

(exact->inexact z) R5RS

procedure(inexact->exact z)

Exact->inexact returns an inexact representation of z. The value returned is the in-
exact number that is numerically closest to the argument. Inexact->exact returns an
exact representation of z. The value returned is the exact number that is numerically
closest to the argument.

STklos Reference Manual

Standard Procedures 37

(number->string z) R5RS

procedure(number->string z radix)

Radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to 10.
The procedure number->string takes a number and a radix and returns as a string
an external representation of the given number in the given radix such that

(let ((number number)
(radix radix))

(eqv? number
(string->number (number->string number radix) radix)))

is true. It is an error if no possible result makes this expression true.

If z is inexact, the radix is 10, and the above expression can be satisfied by a re-
sult that contains a decimal point, then the result contains a decimal point and is
expressed using the minimum number of digits (exclusive of exponent and trailing
zeroes) needed to make the above expression true; otherwise the format of the result
is unspecified.

The result returned by number->string never contains an explicit radix prefix.

Note: The error case can occur only when z is not a complex number or is a complex
number with a non-rational real or imaginary part.

Rationale: If z is an inexact number represented using flonums, and the radix is
10, then the above expression is normally satisfied by a result containing a decimal
point. The unspecified case allows for infinities, NaNs, and non-flonum representa-
tions.

(string->number string) R5RS

procedure(string->number string radix)

Returns a number of the maximally precise representation expressed by the given
string. Radix must be an exact integer, either 2, 8, 10, or 16. If supplied, radix
is a default radix that may be overridden by an explicit radix prefix in string (e.g.
"#o177"). If radix is not supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then string->number returns #f.

(string->number "100") ⇒ 100
(string->number "100" 16) ⇒ 256
(string->number "1e2") ⇒ 100.0
(string->number "15##") ⇒ 1500.0
(string->number "+inf.0") ⇒ +inf.0
(string->number "-inf.0") ⇒ -inf.0

STklos Reference Manual

38 Standard Procedures

(bit-and n1 n2 ...) STklos

procedure(bit-or n1 n2 ...)
(bit-xor n1 n2 ...)
(bit-not n)
(bit-shift n m)

These procedures allow the manipulation of integers as bit fields. The integers can be
of arbitrary length. Bit-and, bit-or and bit-xor respectively compute the bitwise
and, inclusive and exclusive or. bit-not eturns the bitwise not of n. bit-shift
returns the bitwise shift of n. The integer n is shifted left by m bits; If m is negative,
n is shifted right by -m bits.

(bit-or 5 3) ⇒ 7
(bit-xor 5 3) ⇒ 6
(bit-and 5 3) ⇒ 1
(bit-not 5) ⇒ -6
(bit-or 1 2 4 8) ⇒ 15
(bit-shift 5 3) ⇒ 40
(bit-shift 5 -1) ⇒ 2

(random-integer n) STklos

procedure

Return an integer in the range [0, ..., n[. Subsequent results of this procedure appear
to be independent uniformly distributed over the range [0, ..., n[. The argument n
must be a positive integer, otherwise an error is signaled. This function is equivalent
to the eponym function of SRFI-27 (see SRFI-27 (Source of random bits) definition
for more details).

(random-real) STklos

procedure

Return a real number r such that 0 < r < 1. Subsequent results of this procedure
appear to be independent uniformly distributed. This function is equivalent to the
eponym function of SRFI-27 (see SRFI-27 (Source of random bits) definition for
more details).

(decode-float n) STklos

procedure

decode-float returns three exact integers: significand, exponent and sign (where
-1 <= sign <= 1). The values returned by decode-float satisfy:

n = (* sign significand (expt 2 exponent))

Here is an example of decode-float usage.

(receive l (decode-float -1.234) l)
⇒ (5557441940175192 -52 -1)

(exact->inexact (* -1
5557441940175192
(expt 2 -52))
⇒ -1.234

http://srfi.schemers.org/srfi-27/srfi-27.html
http://srfi.schemers.org/srfi-27/srfi-27.html

STklos Reference Manual

Standard Procedures 39

4.3 Booleans

Of all the standard Scheme values, only #f counts as false in conditional expressions. Except
for #f, all standard Scheme values, including #t, pairs, the empty list, symbols, numbers,
strings, vectors, and procedures, count as true.

Boolean constants evaluate to themselves, so they do not need to be quoted in programs.

(not obj) R5RS

procedure

Not returns #t if obj is false, and returns #f otherwise.

(not #t) ⇒ #f
(not 3) ⇒ #f
(not (list 3)) ⇒ #f
(not #f) ⇒ #t
(not ’()) ⇒ #f
(not (list)) ⇒ #f
(not ’nil) ⇒ #f

(boolean? obj) R5RS

procedure

Boolean? returns #t if obj is either #t or #f and returns #f otherwise.

(boolean? #f) ⇒ #t
(boolean? 0) ⇒ #f
(boolean? ’()) ⇒ #f

4.4 Pairs and lists

(pair? obj) R5RS

procedure

Pair? returns #t if obj is a pair, and otherwise returns #f.

(cons obj1 obj2) R5RS

procedure

Returns a newly allocated pair whose car is obj1 and whose cdr is obj2. The pair is
guaranteed to be different (in the sense of eqv?) from every existing object.

(cons ’a ’()) ⇒ (a)
(cons ’(a) ’(b c d)) ⇒ ((a) b c d)
(cons "a" ’(b c)) ⇒ ("a" b c)
(cons ’a 3) ⇒ (a . 3)
(cons ’(a b) ’c) ⇒ ((a b) . c)

(car pair) R5RS

procedure

STklos Reference Manual

40 Standard Procedures

Returns the contents of the car field of pair. Note that it is an error to take the car
of the empty list.

(car ’(a b c)) ⇒ a
(car ’((a) b c d)) ⇒ (a)
(car ’(1 . 2)) ⇒ 1
(car ’()) ⇒ error

(cdr pair) R5RS

procedure

Returns the contents of the cdr field of pair. Note that it is an error to take the cdr
of the empty list.

(cdr ’((a) b c d)) ⇒ (b c d)
(cdr ’(1 . 2)) ⇒ 2
(cdr ’()) ⇒ error

(set-car! pair obj) R5RS

procedure

Stores obj in the car field of pair. The value returned by set-car! is void.

(define (f) (list ’not-a-constant-list))
(define (g) ’(constant-list))
(set-car! (f) 3)
(set-car! (g) 3) ⇒ error

(set-cdr! pair obj) R5RS

procedure

Stores obj in the cdr field of pair. The value returned by set-cdr! is void.

(caar pair) R5RS

procedure(cadr pair)
...
(cdddar pair)
(cddddr pair)

These procedures are compositions of car and cdr, where for example caddr could
be defined by

(define caddr (lambda (x) (car (cdr (cdr x)))))

Arbitrary compositions, up to four deep, are provided. There are twenty-eight of these
procedures in all.

(null? obj) R5RS

procedure

Returns #t if obj is the empty list, otherwise returns #f.

STklos Reference Manual

Standard Procedures 41

(pair-mutable? obj) STklos

procedure

Returns #t if obj is a mutable pair, otherwise returns #f.

(pair-mutable? ’(1 . 2)) ⇒ #f
(pair-mutable? (cons 1 2)) ⇒ #t
(pair-mutable? 12) ⇒ #f

(list? obj) R5RS

procedure

Returns #t if obj is a list, otherwise returns #f. By definition, all lists have finite
length and are terminated by the empty list.

(list? ’(a b c)) ⇒ #t
(list? ’()) ⇒ #t
(list? ’(a . b)) ⇒ #f
(let ((x (list ’a)))
(set-cdr! x x)
(list? x)) ⇒ #f

(list obj ...) R5RS

procedure

Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) ⇒ (a 7 c)
(list) ⇒ ()

(list* obj ...) STklos

procedure

list* is like list except that the last argument to list* is used as the cdr of the
last pair constructed.

(list* 1 2 3) ⇒ (1 2 . 3)
(list* 1 2 3 ’(4 5)) ⇒ (1 2 3 4 5)
(list*) ⇒ ()

(length list) R5RS

procedure

Returns the length of list.

(length ’(a b c)) ⇒ 3
(length ’(a (b) (c d e))) ⇒ 3
(length ’()) ⇒ 0

(append list ...) R5RS

procedure

Returns a list consisting of the elements of the first list followed by the elements of
the other lists.

STklos Reference Manual

42 Standard Procedures

(append ’(x) ’(y)) ⇒ (x y)
(append ’(a) ’(b c d)) ⇒ (a b c d)
(append ’(a (b)) ’((c))) ⇒ (a (b) (c))

The resulting list is always newly allocated, except that it shares structure with the
last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append ’(a b) ’(c . d)) ⇒ (a b c . d)
(append ’() ’a) ⇒ a

(append! list ...) STklos

procedure

Returns a list consisting of the elements of the first list followed by the elements of
the other lists. Contrarily to append, the parameter lists (except the last one) are
physically modified: their last pair is changed to the value of the next list in the
append! formal parameter list.

(let* ((l1 (list 1 2))
(l2 (list 3))
(l3 (list 4 5))
(l4 (append! l1 l2 l3)))

(list l1 l2 l3)) ⇒ ((1 2 3 4 5) (3 4 5) (4 5))

An error is signaled if one of the given lists is a constant list.

(reverse list) R5RS

procedure

Returns a newly allocated list consisting of the elements of list in reverse order.

(reverse ’(a b c)) ⇒ (c b a)
(reverse ’(a (b c) d (e (f)))) ⇒ ((e (f)) d (b c) a)

(reverse! list) STklos

procedure

Returns a list consisting of the elements of list in reverse order. Contrarily to
reverse, the returned value is not newly allocated but computed ”in place”.

(let ((l ’(a b c)))
(list (reverse! l) l)) ⇒ ((c b a) (a))

(reverse! ’(a constant list)) ⇒ error

(list-tail list k) R5RS

procedure

Returns the sublist of list obtained by omitting the first k elements. It is an error if
list has fewer than k elements. List-tail could be defined by

STklos Reference Manual

Standard Procedures 43

(define list-tail
(lambda (x k)

(if (zero? k)
x
(list-tail (cdr x) (- k 1)))))

(last-pair list) STklos

procedure

Returns the last pair of list.

(last-pair ’(1 2 3)) ⇒ (3)
(last-pair ’(1 2 . 3)) ⇒ (2 . 3)

(list-ref list k) R5RS

procedure

Returns the kth element of list. (This is the same as the car of (list-tail list
k).) It is an error if list has fewer than k elements.

(list-ref ’(a b c d) 2) ⇒ c
(list-ref ’(a b c d)

(inexact->exact (round 1.8))) ⇒ c

(memq obj list) R5RS

procedure(memv obj list)
(member obj list)

These procedures return the first sublist of list whose car is obj, where the sublists
of list are the non-empty lists returned by (list-tail list k) for k less than the
length of list. If obj does not occur in list, then #f (not the empty list) is returned.
Memq uses eq? to compare obj with the elements of list, while memv uses eqv? and
member uses equal?.

(memq ’a ’(a b c)) ⇒ (a b c)
(memq ’b ’(a b c)) ⇒ (b c)
(memq ’a ’(b c d)) ⇒ #f
(memq (list ’a) ’(b (a) c)) ⇒ #f
(member (list ’a)

’(b (a) c)) ⇒ ((a) c)
(memv 101 ’(100 101 102)) ⇒ (101 102)

(assq obj alist) R5RS

procedure(assv obj alist)
(assoc obj alist)

Alist (for ”association list”) must be a list of pairs. These procedures find the first
pair in alist whose car field is obj, and returns that pair. If no pair in alist has
obj as its car, then #f (not the empty list) is returned. Assq uses eq? to compare

STklos Reference Manual

44 Standard Procedures

obj with the car fields of the pairs in alist, while assv uses eqv? and assoc uses
equal?.

(define e ’((a 1) (b 2) (c 3)))
(assq ’a e) ⇒ (a 1)
(assq ’b e) ⇒ (b 2)
(assq ’d e) ⇒ #f
(assq (list ’a) ’(((a)) ((b)) ((c))))

⇒ #f
(assoc (list ’a) ’(((a)) ((b)) ((c))))

⇒ ((a))
(assv 5 ’((2 3) (5 7) (11 13)))

⇒ (5 7)

Rationale: Although they are ordinarily used as predicates, memq, memv, member,
assq, assv, and assoc do not have question marks in their names because they
return useful values rather than just #t or #f.

(copy-tree obj) STklos

procedure

Copy-tree recursively copies trees of pairs. If obj is not a pair, it is returned; other-
wise the result is a new pair whose car and cdr are obtained by calling copy-tree
on the car and cdr of obj, respectively.

(filter pred list) STklos

procedure(filter! pred list)

Filter returns all the elements of list that satisfy predicate pred. The list is not
disordered: elements that appear in the result list occur in the same order as they
occur in the argument list. Filter! does the same job than filter by physically
modifying its list argument

(filter even? ’(0 7 8 8 43 -4)) ⇒ (0 8 8 -4)
(let* ((l1 (list 0 7 8 8 43 -4))

(l2 (filter! even? l1)))
(list l1 l2)) ⇒ ((0 8 8 -4) (0 8 8 -4))

An error is signaled if list is a constant list.

(remove pred list) STklos

procedure

Remove returns list without the elements that satisfy predicate pred:

The list is not disordered – elements that appear in the result list occur in the same
order as they occur in the argument list. Remove! does the same job than remove by
physically modifying its list argument

(remove even? ’(0 7 8 8 43 -4)) ⇒ (7 43)

STklos Reference Manual

Standard Procedures 45

(delete x list [=]) STklos

procedure(delete! x list [=])

Delete uses the comparison procedure =, which defaults to equal?, to find all ele-
ments of list that are equal to x, and deletes them from list. The dynamic order
in which the various applications of = are made is not specified.

The list is not disordered – elements that appear in the result list occur in the same
order as they occur in the argument list.

The comparison procedure is used in this way: (= x ei). That is, x is always the
first argument, and a list element is always the second argument. The comparison
procedure will be used to compare each element of list exactly once; the order in which
it is applied to the various ei is not specified. Thus, one can reliably remove all the
numbers greater than five from a list with

(delete 5 list <)

delete! is the linear-update variant of delete. It is allowed, but not required, to
alter the cons cells in its argument list to construct the result.

4.5 Symbols

The STklos reader can read symbols whose names contain special characters or letters in the
non standard case. When a symbol is read, the parts enclosed in bars “|” will be entered
verbatim into the symbol’s name. The “|” characters are not part of the symbol; they only
serve to delimit the sequence of characters that must be entered “as is”. In order to maintain
read-write invariance, symbols containing such sequences of special characters will be written
between a pair of “|”.

’|a| ⇒ a
(string->symbol "a") ⇒ |A|
(symbol->string ’|A|) ⇒ "A"
’|a b| ⇒ |a b|
’a|B|c ⇒ |aBc|
(write ’|FoO|) a |FoO|
(display ’|FoO|) a FoO

(symbol? obj) R5RS

procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) ⇒ #t
(symbol? (car ’(a b))) ⇒ #t
(symbol? "bar") ⇒ #f
(symbol? ’nil) ⇒ #t
(symbol? ’()) ⇒ #f
(symbol? #f) ⇒ #f
(symbol? :key) ⇒ #f

STklos Reference Manual

46 Standard Procedures

(symbol->string string) R5RS

procedure

Returns the name of symbol as a string. If the symbol was part of an object returned
as the value of a literal expression or by a call to the read procedure, and its name
contains alphabetic characters, then the string returned will contain characters in the
implementation’s preferred standard case – STklos prefers lower case. If the symbol
was returned by string->symbol, the case of characters in the string returned will be
the same as the case in the string that was passed to string->symbol. It is an error
to apply mutation procedures like string-set! to strings returned by this procedure.

(symbol->string ’flying-fish) ⇒ "flying-fish"
(symbol->string ’Martin) ⇒ "martin"
(symbol->string (string->symbol "Malvina"))

⇒ "Malvina"

(string->symbol string) R5RS

procedure

Returns the symbol whose name is string. This procedure can create symbols with
names containing special characters or letters in the non-standard case, but it is
usually a bad idea to create such symbols because in some implementations of Scheme
they cannot be read as themselves.

(eq? ’mISSISSIppi ’mississippi) ⇒ #t
(string->symbol "mISSISSIppi") ⇒ |mISSISSIppi|
(eq? ’bitBlt (string->symbol "bitBlt"))

⇒ #f
(eq? ’JollyWog

(string->symbol
(symbol->string ’JollyWog))) ⇒ #t

(string=? "K. Harper, M.D."
(symbol->string
(string->symbol "K. Harper, M.D.")))

⇒ #t

(string->unterned-symbol string) STklos

procedure

Returns the symbol whose print name is made from the characters of string. This
symbol is guaranteed to be unique (i.e. not eq? to any other symbol):

(let ((ua (string->uninterned-symbol "a")))
(list (eq? ’a ua)

(eqv? ’a ua)
(eq? ua (string->uninterned-symbol "a"))
(eqv? ua (string->uninterned-symbol "a"))))
⇒ (#f #t #f #t)

(gensym) STklos

procedure(gensym prefix)

STklos Reference Manual

Standard Procedures 47

Creates a new symbol. The print name of the generated symbol consists of a prefix
(which defaults to “G”) followed by the decimal representation of a number. If prefix
is specified, it must be either a string or a symbol.

(gensym) ⇒ |G100|
(gensym "foo-") ⇒ foo-101
(gensym ’foo-) ⇒ foo-102

4.6 Characters

The following table gives the list of allowed character names with their ASCII eqivalent
expressed in octal. Some chracaters have an alternate name which is also shown in this
table.

name value alt. name name value alt. name

nul 000 null soh 001

stx 002 etx 003

eot 004 enq 005

ack 006 bel 007 bell

bs 010 backspace ht 011 tab

nl 012 newline vt 013

np 014 page cr 015 return

so 016 si 017

dle 020 dc1 021

dc2 022 dc3 023

dc4 024 nak 025

syn 026 etb 027

can 030 em 031

sub 032 esc 033 escape

fs 034 gs 035

rs 036 us 037

sp 040 space del 177 delete

(char? obj) R5RS

procedure

Returns #t if obj is a character, otherwise returns #f.

(char=? char1 char2) R5RS

procedure(char<? char1 char2)
(char>? char1 char2)
(char<=? char1 char2)
(char>=? char1 char2)

These procedures impose a total ordering on the set of characters. It is guaranteed
that under this ordering:

STklos Reference Manual

48 Standard Procedures

• The upper case characters are in order.

• The lower case characters are in order.

• The digits are in order.

• Either all the digits precede all the upper case letters, or vice versa.

• Either all the digits precede all the lower case letters, or vice versa.

(char-ci=? char1 char2) R5RS

procedure(char-ci<? char1 char2)
(char-ci>? char1 char2)
(char-ci<=? char1 char2)
(char-ci>=? char1 char2)

These procedures are similar to char=? et cetera, but they treat upper case and lower
case letters as the same. For example, (char-ci=? #A #a) returns #t.

(char-alphabetic? char) R5RS

procedure(char-numeric? char)
(char-whitespace? char)
(char-upper-case? letter)
(char-lower-case? letter)

These procedures return #t if their arguments are alphabetic, numeric, whitespace,
upper case, or lower case characters, respectively, otherwise they return #f. The
following remarks, which are specific to the ASCII character set, are intended only
as a guide: The alphabetic characters are the 52 upper and lower case letters. The
numeric characters are the ten decimal digits. The whitespace characters are space,
tab, line feed, form feed, and carriage return.

(char->integer char) R5RS

procedure(integer->char n)

Given a character, char->integer returns an exact integer representation of the char-
acter. Given an exact integer that is the image of a character under char->integer,
integer->char returns that character. These procedures implement order-preserving
isomorphisms between the set of characters under the char<=? ordering and some
subset of the integers under the <= ordering. That is, if

(char<=? a b) ⇒ #t and (<= x y) ⇒ #t

and x and y are in the domain of integer->char, then

(<= (char->integer a)
(char->integer b)) ⇒ #t

(char<=? (integer->char x)
(integer->char y)) ⇒ #t

STklos Reference Manual

Standard Procedures 49

(char-upcase char) R5RS

procedure(char-downcase char)

These procedures return a character char2 such that (char-ci=? char char2). In
addition, if char is alphabetic, then the result of char-upcase is upper case and the
result of char-downcase is lower case.

4.7 Strings

STklos string constants allow the insertion of arbitrary characters by encoding them as escape
sequences. An escape sequence is introduced by a backslash “\”. The valid escape sequences
are shown in the following table.

Sequence Character inserted

\b Backspace

\e Escape

\n Newline

\t Horizontal Tab

\n Carriage Return

\0abc ASCII character with octal value abc

\xab ASCII character with hexadecimal value ab

\<newline> None (permits to enter a string on several lines)

\<other> <other>

For instance, the string

"ab040c\nd
e"

is the string consisting of the characters #\a, #\b, #\space, #\c, #\newline, #\d and #\e.

(string? obj) R5RS

procedure

Returns #t if obj is a string, otherwise returns #f.

(make-string k) R5RS

procedure(make-string k char)

Make-string returns a newly allocated string of length k. If char is given, then all
elements of the string are initialized to char, otherwise the contents of the string are
unspecified.

(string char ...) R5RS

procedure

Returns a newly allocated string composed of the arguments.

(string-length string) R5RS

procedure

STklos Reference Manual

50 Standard Procedures

Returns the number of characters in the given string.

(string-ref string k) R5RS

procedure

String-ref returns character k of string using zero-origin indexing (k must be a valid
index of string).

(string-set! string k char) R5RS

procedure

String-set! stores char in element k of string and returns void (k must be a valid
index of string).

(define (f) (make-string 3 #*))
(define (g) "***")
(string-set! (f) 0 #?) ⇒ void
(string-set! (g) 0 #?) ⇒ error
(string-set! (symbol->string ’immutable) 0 #?)

⇒ error

(string=? string1 string2) R5RS

procedure(string-ci=? string1 string2)

Returns #t if the two strings are the same length and contain the same characters in
the same positions, otherwise returns #f. String-ci=? treats upper and lower case
letters as though they were the same character, but string=? treats upper and lower
case as distinct characters.

(string<? string1 string2) R5RS

procedure(string>? string1 string2)
(string<=? string1 string2)
(string>=? string1 string2)
(string-ci<? string1 string2)
(string-ci>? string1 string2)
(string-ci<=? string1 string2)
(string-ci>=? string1 string2)

These procedures are the lexicographic extensions to strings of the corresponding
orderings on characters. For example, string<? is the lexicographic ordering on
strings induced by the ordering char<? on characters. If two strings differ in length
but are the same up to the length of the shorter string, the shorter string is considered
to be lexicographically less than the longer string.

(substring string start end) R5RS

procedure

String must be a string, and start and end must be exact integers satisfying

0 <= start <= end <= (string-length string).

STklos Reference Manual

Standard Procedures 51

Substring returns a newly allocated string formed from the characters of string
beginning with index start (inclusive) and ending with index end (exclusive).

(string-append string ...) R5RS

procedure

Returns a newly allocated string whose characters form the concatenation of the given
strings.

(string->list string) R5RS

procedure(list->string list)

String->list returns a newly allocated list of the characters that make up the given
string. List->string returns a newly allocated string formed from the characters in
the list list, which must be a list of characters. String->list and list->string
are inverses so far as equal? is concerned.

(string-copy string) R5RS

procedure

Returns a newly allocated copy of the given string.

(string-split str) STklos

procedure(string-split str delimiters)

parses string and returns a list of tokens ended by a character of the delimiters
string. If delimiters is omitted, it defaults to a string containing a space, a tabulation
and a newline characters.

(string-split "/usr/local/bin" "/")
⇒ ("usr" "local" "bin")

(string-split "once upon a time")
⇒ ("once" "upon" "a" "time")

(string-index str1 str2) STklos

procedure

Returns the (first) index where str1 is a substring of str2 if it exists; otherwise
returns #f.

(string-index "ca" "abracadabra") ⇒ 4
(string-index "ba" "abracadabra") ⇒ #f

(string-find? str1 str2) STklos

procedure

Returns #t if str1 appears somewhere in str2; otherwise returns #f.

(string-fill! string char) STklos

procedure

Stores char in every element of the given string and returns void.

(string-mutable? obj) STklos

procedure

STklos Reference Manual

52 Standard Procedures

Returns #t if obj is a mutable string, otherwise returns #f.

(string-mutable? "abc") ⇒ #f
(string-mutable? (string-copy "abc")) ⇒ #t
(string-mutable? (string #a #b #c)) ⇒ #t
(string-mutable? 12) ⇒ #f

The following string primitives are compatible with SRFI-13 (String Library) and their
documentation comes from the SRFI document.

Note: The string SRFI is supported by STklos. The function listed below just don’t need
to load the full SRFI to be used

(string-downcase str) STklos

procedure(string-downcase str start)
(string-downcase str start end)

Returns a string in which the upper case letters of string str between the start and
end indices have been replaced by their lower case equivalent. If start is omited, it
defaults to 0. If end is omited, it defaults to the length of str.

(string-downcase "Foo BAR") ⇒ "foo bar"
(string-downcase "Foo BAR" 4) ⇒ "bar"
(string-downcase "Foo BAR" 4 6) ⇒ "ba"

(string-downcase! str) STklos

procedure(string-downcase! str start)
(string-downcase! str start end)

This is the in-place side-effecting variant of string-downcase.

(string-downcase! (string-copy "Foo BAR") 4) ⇒ "Foo bar"
(string-downcase! (string-copy "Foo BAR") 4 6) ⇒ "Foo baR"

(string-upcase str) STklos

procedure(string-upcase str start)
(string-upcase str start end)

Returns a string in which the lower case letters of string str between the start and
end indices have been replaced by their upper case equivalent. If start is omited, it
defaults to 0. If end is omited, it defaults to the length of str.

(string-upcase! str) STklos

procedure(string-upcase! str start)
(string-upcase! str start end)

This is the in-place side-effecting variant of string-upcase.

http://srfi.schemers.org/srfi-13/srfi-13.html

STklos Reference Manual

Standard Procedures 53

(string-titlecase str) STklos

procedure(string-titlecase str start)
(string-titlecase str start end)

This function returns a string. For every character c in the selected range of str, if c
is preceded by a cased character, it is downcased; otherwise it is titlecased. If start
is omited, it defaults to 0. If end is omited, it defaults to the length of str. Note that
if a start index is specified, then the character preceding s‘(start) has no effect on
the titlecase decision for character s‘(start).

(string-titlecase "--capitalize tHIS sentence.")
⇒ "--Capitalize This Sentence."

(string-titlecase "see Spot run. see Nix run.")
⇒ "See Spot Run. See Nix Run."

(string-titlecase "3com makes routers.")
⇒ "3Com Makes Routers."

(string-titlecase "greasy fried chicken" 2)
⇒ "Easy Fried Chicken"

(string-titlecase! str) STklos

procedure(string-titlecase! str start)
(string-titlecase! str start end)

This is the in-place side-effecting variant of string-titlecase.

4.8 Vectors

Vectors are heterogenous structures whose elements are indexed by integers. A vector typ-
ically occupies less space than a list of the same length, and the average time required to
access a randomly chosen element is typically less for the vector than for the list.

The length of a vector is the number of elements that it contains. This number is a non-
negative integer that is fixed when the vector is created. The valid indexes of a vector are
the exact non-negative integers less than the length of the vector. The first element in a
vector is indexed by zero, and the last element is indexed by one less than the length of the
vector.

Vectors are written using the notation #(obj ...). For example, a vector of length 3
containing the number zero in element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")

Note: In STklos, vectors constants don’t need to be quoted.

(vector? obj) R5RS

procedure

Returns #t if obj is a vector, otherwise returns #f.

STklos Reference Manual

54 Standard Procedures

(make-vector k) R5RS

procedure(make-vector k fill)

Returns a newly allocated vector of k elements. If a second argument is given, then
each element is initialized to fill. Otherwise the initial contents of each element is
unspecified.

(vector obj ...) R5RS

procedure

Returns a newly allocated vector whose elements contain the given arguments. Anal-
ogous to list.

(vector ’a ’b ’c) ⇒ #(a b c)

(vector-length vector) R5RS

procedure

Returns the number of elements in vector as an exact integer.

(vector-ref vector k) R5RS

procedure

k must be a valid index of vector. Vector-ref returns the contents of element k of
vector.

(vector-ref ’#(1 1 2 3 5 8 13 21)
5) ⇒ 8

(vector-ref ’#(1 1 2 3 5 8 13 21)
(let ((i (round (* 2 (acos -1)))))
(if (inexact? i)

(inexact->exact i)
i))) ⇒ 13

(vector-set! vector k obj) R5RS

procedure

k must be a valid index of vector. Vector-set! stores obj in element k of vector.
The value returned by vector-set! is void.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))
(vector-set! vec 1 ’("Sue" "Sue"))
vec) ⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe") ⇒ error ; constant vector

(vector->list vector) R5RS

procedure(list->vector list)

Vector->list returns a newly allocated list of the objects contained in the elements
of vector. List->vector returns a newly created vector initialized to the elements
of the list list.

STklos Reference Manual

Standard Procedures 55

(vector->list ’#(dah dah didah)) ⇒ (dah dah didah)
(list->vector ’(dididit dah)) ⇒ #(dididit dah)

(vector-fill! vector fill) R5RS

procedure

Stores fill in every element of vector. The value returned by vector-fill! is
void.

(vector-copy v) STklos

procedure

Return a copy of vectot v. Note that, if v is a constant vector, its copy is not constant.

(vector-resize v size) STklos

procedure(vector-resize v size fill)

Returns a copy of v of the given size. If size is greater than the vector size of v,
the contents of the newly allocated vector cells is set to the value of fill. If fill is
omitted the content of the new cells is void.

(vector-mutable? obj) STklos

procedure

Returns #t if obj is a mutable vector, otherwise returns #f.

(vector-mutable? ’#(1 2 a b)) ⇒ #f
(vector-mutable? (vector-copy ’#(1 2))) ⇒ #t
(vector-mutable? (vector 1 2 3)) ⇒ #t
(vector-mutable? 12) ⇒ #f

(sort obj predicate) STklos

procedure

Obj must be a list or a vector. Sort returns a copy of obj sorted according to
predicate. Predicate must be a procedure which takes two arguments and returns
a true value if the first argument is strictly “before” the second.

(sort ’(1 2 -4 12 9 -1 2 3) <)
⇒ (-4 -1 1 2 2 3 9 12)

(sort ’#("one" "two" "three" "four")
(lambda (x y) (> (string-length x) (string-length y))))

⇒ ’#("three" "four" "one" "two")

4.9 Structures

A structure type is a record data type composing a number of slots. A structure, an instance
of a structure type, is a first-class value that contains a value for each field of the structure
type.

Structures can be created with the define-struct high level syntax. However, STklos also
offers some low-level functions to build and access the internals of a structure.

STklos Reference Manual

56 Standard Procedures

(define-struct <name> <slot> ...) STklos

syntax

Defines a structure type whose name is <name>. Once a structure type is defined, the
following symbols are bound:

• <name> denotes the structure type.

• make-<name> is a procedure which takes 0 to n parameters (if there are n slots
defined). Each parameter is assigned to the corresponding field (in the definition
order).

• <name>? is a predicate which returns #t when applied to an instance of the
<name> structure type and #f otherwise.

• <name>-<slot> (one for each defined <slot>) to read the content of an instance
of the <name> structure type. Writting the content of a slot can be done using
a generalized set!.

(define-struct point x y)
(define p (make-point 1 2))
(point? p) ⇒ #t
(point? 100) ⇒ #f
(point-x p) ⇒ 1
(point-y p) ⇒ 2
(set! (point-x p) 10)
(point-x p) ⇒ 10

(make-struct-type name parent slots) STklos

procedure

This form which is more general than define-struct permits to define a new struc-
ture type whose name is name. Parent is the structure type from which is the new
structure type is a subtype (or #f is the new structure-type has no super type). Slots
is the list of the slot names which constitute the structure tpe.

When a structure type is s subtype of a previous type, its slots are added to the
ones of the super type.

(struct-type? obj) STklos

procedure

Returns #t if obj is a structure type, otherwise return #f.

(let ((type (make-struct-type ’point #f ’(x y))))
(struct-type? type)) ⇒ #t

(struct-type-slots structype) STklos

procedure

Returns the slots of the structure type structype as a list.

STklos Reference Manual

Standard Procedures 57

(define point (make-struct-type ’point #f ’(x y)))
(define circle (make-struct-type ’circle point ’(r)))
(struct-type-slots point) ⇒ (x y)
(struct-type-slots circle) ⇒ (x y r)

(struct-type-parent structype) STklos

procedure

Returns the super type of the structure type structype, if it exists or #f otherwise.

(struct-type-name structype) STklos

procedure

Returns the name associated to the structure type structype.

(struct-type-change-writer! structype proc) STklos

procedure

Change the default writer associated to structures of type structype to to the proc
procedure. The proc procedure must accept 2 arguments (the structure to write and
the port wher the structure must be written in that order). The value returned by
struct-type-change-writer! is the old writer associated to structype. To restore
the standard wtructure writer for structype, use the special value #f.

(define point (make-struct-type ’point #f ’(x y)))

(struct-type-change-writer!
point
(lambda (s port)
(let ((type (struct-type s)))
(format port "{~A" (struct-type-name type))
;; display the slots and their value

(for-each (lambda (x)
(format port " ~A=~S" x (struct-ref s x)))

(struct-type-slots type))
(format port "}"))))

(display (make-struct point 1 2)) a {point x=1 y=2}

(make-struct structype expr ...) STklos

procedure

Returns a newly allocated instance of the structure type structype, whose slots are
initialized to expr ... If fewer expr than the number of instances are given to make-
struct, the remaining slots are inialized with the special void value.

(struct? obj) STklos

procedure

Returns #t if obj is a structure, otherwise return #f#.

(let* ((type (make-struct-type ’point #f ’(x y)))
(inst (make-struct type 1 2)))

(struct? inst)) ⇒ #t

STklos Reference Manual

58 Standard Procedures

(struct-type s) STklos

procedure

Returns the structure type of the s structure

(struct-ref s slot-name) STklos

procedure

Returns the value associated to slot slot-name of the s structure.

(define point (make-struct-type ’point #f ’(x y)))
(define circle (make-struct-type ’circle point ’(r)))
(define p (make-struct point 1 2))
(define c (make-struct circle 10 20 30))
(struct-ref p ’y) ⇒ 2
(struct-ref c ’r) ⇒ 30

(struct-set! s slot-name value) STklos

procedure

Stores value in the to slot slot-name of the s structure. The value returned by
struct-set! is void.

(define point (make-struct-type ’point #f ’(x y)))
(define p (make-struct point 1 2))
(struct-ref p ’x) ⇒ 1
(struct-set! p ’x 0)
(struct-ref p ’x) ⇒ 0

(struct-is-a? s structype) STklos

procedure

Return a boolean that indicates if the structure s is a of type structype. Note that
if s is an instance of a subtype of S, it is considered also as an instance of type S.

(define point (make-struct-type ’point #f ’(x y)))
(define circle (make-struct-type ’circle point ’(r)))
(define p (make-struct point 1 2))
(define c (make-struct circle 10 20 30))
(struct-is-a? p point) ⇒ #t
(struct-is-a? c point) ⇒ #t
(struct-is-a? p circle) ⇒ #f
(struct-is-a? c circle) ⇒ #t

(struct->list s) STklos

procedure

Returns the content of structure s as an A-list whose keys are the slots of the structure
type of s.

(define point (make-struct-type ’point #f ’(x y)))
(define p (make-struct point 1 2))
(struct->list p) ⇒ ((x . 1) (y . 2))

STklos Reference Manual

Standard Procedures 59

4.10 Control features

(procedure? obj) R5RS

procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) ⇒ #t
(procedure? ’car) ⇒ #f
(procedure? (lambda (x) (* x x))) ⇒ #t
(procedure? ’(lambda (x) (* x x))) ⇒ #f
(call-with-current-continuation procedure?) ⇒ #t

(apply proc arg1 ... args) R5RS

procedure

Proc must be a procedure and args must be a list. Calls proc with the elements of
the list

(append (list arg1 ...) args)

as the actual arguments.

(apply + (list 3 4)) ⇒ 7

(define compose
(lambda (f g)

(lambda args
(f (apply g args)))))

((compose sqrt *) 12 75) ⇒ 30

(map proc list1 list2 ...) R5RS

procedure

The lists must be lists, and proc must be a procedure taking as many arguments as
there are lists and returning a single value. If more than one list is given, then they
must all be the same length. Map applies proc element-wise to the elements of the
lists and returns a list of the results, in order. The dynamic order in which proc is
applied to the elements of the lists is unspecified.

(map cadr ’((a b) (d e) (g h))) ⇒ (b e h)

(map (lambda (n) (expt n n))
’(1 2 3 4 5)) ⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6)) ⇒ (5 7 9)

(let ((count 0))
(map (lambda (ignored)

(set! count (+ count 1))
count)
’(a b))) ⇒ (1 2) or (2 1)

STklos Reference Manual

60 Standard Procedures

(for-each proc list1 list2 ...) R5RS

procedure

The arguments to for-each are like the arguments to map, but for-each calls proc
for its side effects rather than for its values. Unlike map, for-each is guaranteed to
call proc on the elements of the lists in order from the first element(s) to the last, and
the value returned by for-each is void.

(let ((v (make-vector 5)))
(for-each (lambda (i)

(vector-set! v i (* i i)))
’(0 1 2 3 4))

v) ⇒ #(0 1 4 9 16)

(every pred list1 list2 ...) STklos

procedure

every applies the predicate pred across the lists, returning true if the predicate re-
turns true on every application.

If there are n list arguments list1 ... listn, then pred must be a procedure taking
n arguments and returning a boolean result.

every applies pred to the first elements of the listi parameters. If this applica-
tion returns false, every immediately returns #f. Otherwise, it iterates, applying
pred to the second elements of the listi parameters, then the third, and so forth.
The iteration stops when a false value is produced or one of the lists runs out of values.
In the latter case, every returns the true value produced by its final application of
pred. The application of pred to the last element of the lists is a tail call.

If one of the listi has no elements, every simply returns #t.

Like any, every’s name does not end with a question mark – this is to indicate that
it does not return a simple boolean (#t or #f), but a general value.

(any pred list1 list2 ...) STklos

procedure

any applies the predicate across the lists, returning true if the predicate returns true
on any application.

If there are n list arguments list1 ... listn, then pred must be a procedure taking
n arguments.

any applies pred to the first elements of the listi parameters. If this application
returns a true value, any immediately returns that value. Otherwise, it iterates, ap-
plying pred to the second elements of the listi parameters, then the third, and so
forth. The iteration stops when a true value is produced or one of the lists runs out of
values; in the latter case, any returns #f. The application of pred to the last element
of the lists is a tail call.

STklos Reference Manual

Standard Procedures 61

Like every, any’s name does not end with a question mark – this is to indicate that it
does not return a simple boolean (#t or #f), but a general value.

(any integer? ’(a 3 b 2.7)) ⇒ #t
(any integer? ’(a 3.1 b 2.7)) ⇒ #f
(any < ’(3 1 4 1 5)

’(2 7 1 8 2)) ⇒ #t

(force promise) R5RS

procedure

Forces the value of promise (see delay). If no value has been computed for the
promise, then a value is computed and returned. The value of the promise is cached
(or ”memoized”) so that if it is forced a second time, the previously computed value
is returned.

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2))))
(list (force p) (force p))) ⇒ (3 3)

(define a-stream
(letrec ((next (lambda (n)

(cons n (delay (next (+ n 1)))))))
(next 0)))

(define head car)
(define tail (lambda (stream) (force (cdr stream))))

(head (tail (tail a-stream))) ⇒ 2

Force and delay are mainly intended for programs written in functional style. The
following examples should not be considered to illustrate good programming style,
but they illustrate the property that only one value is computed for a promise, no
matter how many times it is forced.

(define count 0)
(define p (delay (begin (set! count (+ count 1))

(if (> count x)
count
(force p)))))

(define x 5)
p ⇒ a promise
(force p) ⇒ 6
p ⇒ a promise, still
(begin (set! x 10)

(force p)) ⇒ 6

Note: See R5RS for details on a posssible way to implement force and delay.

(call-with-current-continuation proc) R5RS

procedure(call/cc proc)

STklos Reference Manual

62 Standard Procedures

Proc must be a procedure of one argument. The procedure call-with-current-
continuation packages up the current continuation (see the rationale below) as an
“escape procedure” and passes it as an argument to proc. The escape procedure is
a Scheme procedure that, if it is later called, will abandon whatever continuation is
in effect at that later time and will instead use the continuation that was in effect
when the escape procedure was created. Calling the escape procedure may cause the
invocation of before and after thunks installed using dynamic-wind.

The escape procedure accepts the same number of arguments as the continuation
to the original call to call-with-current-continuation. Except for continuations
created by the call-with-values procedure, all continuations take exactly one value.

The escape procedure that is passed to proc has unlimited extent just like any other
procedure in Scheme. It may be stored in variables or data structures and may be
called as many times as desired.

The following examples show only the most common ways in which call-with-
current-continuation is used. If all real uses were as simple as these examples,
there would be no need for a procedure with the power of call-with-current-
continuation.

(call-with-current-continuation
(lambda (exit)
(for-each (lambda (x)

(if (negative? x)
(exit x)))

’(54 0 37 -3 245 19))
#t)) ⇒ -3

(define list-length
(lambda (obj)
(call-with-current-continuation
(lambda (return)
(letrec ((r

(lambda (obj)
(cond ((null? obj) 0)

((pair? obj)
(+ (r (cdr obj)) 1))
(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) ⇒ 4
(list-length ’(a b . c)) ⇒ #f

Rationale: A common use of call-with-current-continuation is for structured,
non-local exits from loops or procedure bodies, but in fact call-with-current-
continuation is extremely useful for implementing a wide variety of advanced control
structures.

STklos Reference Manual

Standard Procedures 63

Whenever a Scheme expression is evaluated there is a continuation wanting the re-
sult of the expression. The continuation represents an entire (default) future for the
computation. If the expression is evaluated at top level, for example, then the con-
tinuation might take the result, print it on the screen, prompt for the next input,
evaluate it, and so on forever. Most of the time the continuation includes actions
specified by user code, as in a continuation that will take the result, multiply it by the
value stored in a local variable, add seven, and give the answer to the top level contin-
uation to be printed. Normally these ubiquitous continuations are hidden behind the
scenes and programmers do not think much about them. On rare occasions, however,
a programmer may need to deal with continuations explicitly. Call-with-current-
continuation allows Scheme programmers to do that by creating a procedure that
acts just like the current continuation.

Note: call/cc is just another name for call-with-current-continuation.

(call/ec proc) STklos

procedure

call/ec is an short name for call-with-escape-continuation. call/ec calls proc
with one parameter, which is the current escape continuation (a continuation which
can only be used to abort a computation and hence cannot be ”re-enterered”.

(list 1
(call/ec (lambda (return) (list ’a (return ’b) ’c)))
3) ⇒ (1 b 3)

call/ec is cheaper than the full call/ec. It is particularily useful whence all the power
of call/cc is not needded.

(values obj ...) R5RS

procedure

Delivers all of its arguments to its continuation. Note: R5RS imposes to use multiple
values in the context of of a call-with-values. In STklos, if values is not used
with call-with-values, only the first value is used (i.e. others values are ignored).

(call-with-values producer consumer) R5RS

procedure

Calls its producer argument with no values and a continuation that, when passed some
values, calls the consumer procedure with those values as arguments. The continuation
for the call to consumer is the continuation of the call to call-with-values.

(call-with-values (lambda () (values 4 5))
(lambda (a b) b)) ⇒ 5

(call-with-values * -) ⇒ -1

(receive <formals> <expression> <body>) STklos

syntax

This form is defined in SRFI-8 (Receive: Binding to multiple values). It simplifies
the usage of multiple values. Specifically, <formals> can have any of three forms:

http://srfi.schemers.org/srfi-8/srfi-8.html

STklos Reference Manual

64 Standard Procedures

• (<variable1> ... <variablen>):
The environment in which the receive-expression is evaluated is extended by
binding <variable1>, ..., <variablen> to fresh locations.

The <expression> is evaluated, and its values are stored into those locations.
(It is an error if <expression> does not have exactly n values.)

• <variable>:
The environment in which the receive-expression is evaluated is extended by
binding <variable> to a fresh location. The <expression> is evaluated, its
values are converted into a newly allocated list, and the list is stored in the
location bound to <variable>.

• (<variable1> ... <variablen> . <variablen + 1>):
The environment in which the receive-expression is evaluated is extended by
binding <variable1>, ..., <variablen + 1> to fresh locations. The <expression>
is evaluated. Its first n values are stored into the locations bound to <variable1>
... <variablen>. Any remaining values are converted into a newly allocated list,
which is stored into the location bound to <variablen + 1>. (It is an error if
<expression> does not have at least n values.)

In any case, the expressions in <body> are evaluated sequentially in the extended
environment. The results of the last expression in the body are the values of the
receive-expression.

(let ((n 123))
(receive (q r)

(values (quotient n 10) (modulo n 10))
(cons q r)))

⇒ (12 . 3)

(dynamic-wind before thunk after) R5RS

procedure

Current version of dynamic-wind mimics the R5RS one. In particular, it does not
yet interact with call-with-current-continuation as required by R5RS.

Calls thunk without arguments, returning the result(s) of this call. Before and
after are called, also without arguments, as required by the following rules (note
that in the absence of calls to continuations captured using call-with-current-
continuation the three arguments are called once each, in order). Before is called
whenever execution enters the dynamic extent of the call to thunk and after is called
whenever it exits that dynamic extent. The dynamic extent of a procedure call is the
period between when the call is initiated and when it returns. In Scheme, because of
call-with-current-continuation, the dynamic extent of a call may not be a single,
connected time period. It is defined as follows:

• The dynamic extent is entered when execution of the body of the called proce-
dure begins.

• The dynamic extent is also entered when execution is not within the dynam-
ic extent and a continuation is invoked that was captured (using call-with-
current-continuation) during the dynamic extent.

STklos Reference Manual

Standard Procedures 65

• It is exited when the called procedure returns.

• It is also exited when execution is within the dynamic extent and a continuation
is invoked that was captured while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the afters from these two
invocations of dynamic-wind are both to be called, then the after associated with the
second (inner) call to dynamic-wind is called first.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called, then the before associated
with the first (outer) call to dynamic-wind is called first.

If invoking a continuation requires calling the before from one call to dynamic-wind
and the after from another, then the after is called first.

The effect of using a captured continuation to enter or exit the dynamic extent of a
call to before or after is undefined.

(let ((path ’())
(c #f))

(let ((add (lambda (s)
(set! path (cons s path)))))

(dynamic-wind
(lambda () (add ’connect))
(lambda ()
(add (call-with-current-continuation

(lambda (c0)
(set! c c0)
’talk1))))

(lambda () (add ’disconnect)))
(if (< (length path) 4)

(c ’talk2)
(reverse path))))

⇒ (connect talk1 disconnect
connect talk2 disconnect)

(eval expression environment) R5RS

procedure(eval expression)

Current form of STklos eval is not conform to R5RS.

(eval-from-string str) STklos

procedure(eval-from-string str module)

STklos Reference Manual

66 Standard Procedures

Read an expression from str and evaluates it with eval. If a module is passed, the
evaluation takes place in the enviroment of this module. Otherwise, the evaluation
takes palce in the environmebnt returned by current-module.

(define x 10)
(define-module M
(define x 100))

(eval-from-string "(+ x x)") ⇒ 20
(eval-from-string "(+ x x)" (find-module ’M)) ⇒ 200

4.11 Input and Output

R5RS states that ports represent input and output devices. However, it defines only ports
which are attached to files. In STklos, ports can also be attached to strings, to a external
command input or output, or even be virtual (i.e. the behavior of the port is given by the
user).

• String ports are similar to file ports, except that characters are read from (or written
to) a string rather than a file.

• External command input or output ports are implemented with Unix pipes and are
called pipe ports. A pipe port is created by specifying the command to execute prefixed
with the string ‘‘| ’’ (that is a pipe bar followed by a space). Specification of a pipe
port can occur everywhere a file name is needed.

• Virtual ports are created by supplying basic I/O functions at port creation time. These
functions will be used to simulate low level accesses to a “virtual device”. This kind
of port is particularly convenient for reading or writing in a graphical window as if it
was a file. Once a virtual port is created, it can be accessed as a normal port with the
standard Scheme primitives.

4.11.1 Ports

(call-with-input-file string proc) R5RS

procedure(call-with-output-file string proc)

String should be a string naming a file, and proc should be a procedure that ac-
cepts one argument. For call-with-input-file, the file should already exist. These
procedures call proc with one argument: the port obtained by opening the named
file for input or output. If the file cannot be opened, an error is signaled. If proc
returns, then the port is closed automatically and the value(s) yielded by the proc
is(are) returned. If proc does not return, then the port will not be closed automatically.

Rationale: Because Scheme’s escape procedures have unlimited extent, it is possible
to escape from the current continuation but later to escape back in. If implementa-
tions were permitted to close the port on any escape from the current continuation,
then it would be impossible to write portable code using both call-with-current-
continuation and call-with-input-file or call-with-output-file.

STklos Reference Manual

Standard Procedures 67

(call-with-input-string string proc) STklos

procedure

behaves as call-with-input-file except that the port passed to proc is the sting
port obtained from port.

(call-with-input-string "123 456"
(lambda (x)

(let* ((n1 (read x))
(n2 (read x)))

(cons n1 n2)))) ⇒ (123 . 456)

(call-with-output-string proc) STklos

procedure

Proc should be a procedure of one argument. Call-with-output-string calls proc
with a freshly opened output string port. The result of this procedure is a string
containing all the text that has been written on the string port.

(call-with-output-string
(lambda (x) (write 123 x) (display "Hello" x))) ⇒ "123Hello"

(input-port? obj) R5RS

procedure(output-port? obj)

Returns #t if obj is an input port or output port respectively, otherwise returns #f.

(input-string-port? obj) STklos

procedure(output-string-port? obj)

Returns #t if obj is an input string port or output string port respectively, otherwise
returns #f.

(input-file-port? obj) STklos

procedure(output-file-port? obj)

Returns #t if obj is a file input port or a file output port respectively, otherwise
returns #f.

(input-virtual-port? obj) STklos

procedure(output-virtual-port? obj)

Returns #t if obj is a virtual input port or a virtual output port respectively, otherwise
returns #f.

(interactive-port? port) STklos

procedure

Returns #t if port is connected to a terminal and #f otherwise.

(current-input-port obj) R5RS

procedure(current-output-port obj)

STklos Reference Manual

68 Standard Procedures

Returns the current default input or output port.

(current-error-port obj) STklos

procedure

Returns the current default error port.

(with-input-from-file string thunk) R5RS

procedure(with-output-to-file string thunk)

String should be a string naming a file, and proc should be a procedure of no argu-
ments. For with-input-from-file, the file should already exist. The file is opened
for input or output, an input or output port connected to it is made the default value
returned by current-input-port or current-output-port (and is used by (read),
(write obj), and so forth), and the thunk is called with no arguments. When the
thunk returns, the port is closed and the previous default is restored. With-input-
from-file and with-output-to-file return(s) the value(s) yielded by thunk.

The following example uses a pipe port opened for reading. It permits to read all
the lines produced by an external ls command (i.e. the output of the ls command is
redirected to the Scheme pipe port).

(with-input-from-file "| ls -ls"
(lambda ()
(do ((l (read-line) (read-line)))

((eof-object? l))
(display l)
(newline))))

Hereafter is another example of Unix command redirection. This time, it is the
standard input of the Unix command which is redirected.

(with-output-to-file "| mail root"
(lambda ()
(display "A simple mail from Scheme")
(newline)))

(with-error-to-file string thunk) STklos

procedure

This procedure is similar to with-output-to-file, excepted that it uses the current error
port instead of the output port.

(with-input-from-string string thunk) STklos

procedure

A string port is opened for input from string. Current-input-port is set to the
port and thunk is called. When thunk returns, the previous default input port is
restored. With-input-from-string returns the value(s) computed by thunk.

(with-input-from-string "123 456"
(lambda () (read))) ⇒ 123

STklos Reference Manual

Standard Procedures 69

(with-output-to-string thunk) STklos

procedure

A string port is opened for output. Current-output-port is set to it and thunk
is called. When thunk returns, the previous default output port is restored. With-
output-to-string returns the string containing the text written on the string port.

(with-output-to-string
(lambda () (write 123) (write "Hello"))) ⇒ "123\"Hello\""

(with-input-from-port port thunk) STklos

procedure(with-output-to-port port thunk)
(with-error-to-port port thunk)

Port should be a port, and proc should be a procedure of no arguments. These
procedures do a job similar to the with-...-file counterparts excepted that they
use an open port instead of string specifying a file name

(open-input-file filename) R5RS

procedure

Takes a string naming an existing file and returns an input port capable of delivering
characters from the file. If the file cannot be opened, an error is signalled.

Note: if filename starts with the string ‘‘| ’’, this procedure returns a pipe
port. Consequently, it is not possible to open a file whose name starts with those
two characters.

(open-input-string str) STklos

procedure

Returns an input string port capable of delivering characters from str.

(open-input-virtual :key (read-char #f) (ready? #f) (eof? #f) (close #f)) STklos

procedure

Returns a virtual port using the read-char procedure to read a character from the
port, ready? to know if there is any data to read from the port, eof? to know if
the end of file is reached on the port and finally close to close the port. All theses
procedure takes one parameter which is the port from which the input takes place.
Open-input-virtual accepts also the special value #f for the I/O procedures with
the following conventions:

• if read-char or eof? is #f, any attempt to read the virtual port will return an
eof object;

• if ready? is #f, the file is always ready for reading;

• if close is #f, no action is done when the port is closed.

Hereafter is a possible implementation of open-input-string using virtual ports:

STklos Reference Manual

70 Standard Procedures

(define (open-input-string str)
(let ((index 0))
(open-input-virtual

:read-char (lambda (p)
;; test on eof is already done by the system

(let ((res (string-ref str index)))
(set! index (+ index 1))
res))

:eof? (lambda (p) (>= index (string-length str))))))

(open-output-file filename) R5RS

procedure

Takes a string naming an output file to be created and returns an output port capable
of writing characters to a new file by that name. If the file cannot be opened, an error
is signalled. If a file with the given name already exists, it is rewritten.

Note: if filename starts with the string ‘‘| ’’, this procedure returns a pipe
port. Consequently, it is not possible to open a file whose name starts with those
two characters.

(open-output-string) STklos

procedure

Returns an output string port capable of receiving and collecting characters.

(open-output-virtual :key (write-char #f) (write-string #f) (flush #f) (close STklos

procedure#f))

Returns a virtual port using the write-char procedure to write a character to the
port, write-string to write a string to the port, flush to (eventuelly) flush the
characters on the port and finally closeto close the port. Write-char takes two pa-
rameters: a character and the port to which the output must be done. write-string
takes two parameters: a string and a port. Flush and Close take one parameter
which is the port on which the action must be done. Open-output-virtual accepts
also the special value #f for the I/O procedures. If a procedure is #f nothing is done
on the corresponding action.

Hereafter is an (very inefficient) implementation of a variant of open-output-string
using virtual ports. The value of the output string is printed when the port is closed:

(define (open-output-string)
(let ((str ""))
(open-output-virtual

:write-char (lambda (c p)
(set! str (string-append str (string c))))

:write-string (lambda (s p)
(set! str (string-append str s)))

:close (lambda (p) (write str) (newline)))))

STklos Reference Manual

Standard Procedures 71

Note: write-string is mainly used for writing strings and is generally more effi-
cient than writing the string character by character. However, if write-string is not
provided, strings are printed with write-char. On the other hand, if write-char is
absent, characters are written by successive allocation of one character strings.

Hereafter is another example: a virtual file port where all characters are convert-
ed to upper case:

(define (open-output-uppercase-file file)
(let ((out (open-file file "w")))
(and out

(open-output-virtual
:write-string (lambda (s p)

(display (string-upper s) out))
:close (lambda (p)

(close-port out))))))

(open-file filename mode) STklos

procedure

Opens the file whose name is filename with the specified string mode which can be:

• "r" to open file for reading. The stream is positioned at the beginning of the
file.

• "r+" to open file for reading and writing. The stream is positioned at the
beginning of the file.

• "w" to truncate file to zero length or create file for writing. The stream is
positioned at the beginning of the file.

• "w+" to open file for reading and writing. The file is created if it does not exist,
otherwise it is truncated. The stream is positioned at the beginning of the file.

• "a" to open for writing. The file is created if it does not exist. The stream is
positioned at the end of the file.

• "a+" to open file for reading and writing. The file is created if it does not exist.
The stream is positioned at the end of the file.

If the file can be opened, open-file returns the port associated with the given file,
otherwise it returns #f. Here again, the “magic” string ”| ” permits to open a pipe
port (in this case mode can only be "r" or "w").

(get-output-string port) STklos

procedure

Returns a string containing all the text that has been written on the output string
port.

(let ((p (open-output-string)))
(display "Hello, world" p)
(get-output-string p)) ⇒ "Hello, world"

STklos Reference Manual

72 Standard Procedures

(close-input-port port) R5RS

procedure(close-output-port port)

Closes the port associated with port, rendering the port incapable of delivering or
accepting characters. These routines have no effect if the port has already been closed.
The value returned is void.

(close-port port) STklos

procedure

Closes the port associated with port.

(port-rewind port) STklos

procedure

Sets the port position to the beginning of port. The value returned by port-rewind
is void.

(port-seek port pos) STklos

procedure(port-seek port pos whence)

Sets the file position for the given port to the position pos. The new position, mea-
sured in bytes, is obtained by adding pos bytes to the position specified by whence.
If passed, whence must be one of :start, :current or :end. The resulting position
is relative to the start of the file, the current position indicator, or end-of-file, respec-
tively. If whence is omitted, it defaults to :start.

Note: After using port-seek, the value returned by port-current-line may be
incorrect.

(port-current-line) STklos

procedure(port-current-line port)

Returns the current line number associated to the given input port as an integer.
The port argument may be omitted, in which case it defaults to the value returned
by current-input-port.

Note: The port-seek, read-chars and read-chars! procedures generally break
the line-number. After using one of theses procedures, the value returned by port-
current-line will be -1 (except a port-seek at the beginning of the port reinitializes
the line counter).

(port-current-position) STklos

procedure(port-current-position port)

Returns the position associated to the given input port as an integer (i.e. number of
characters from the beginning of the port). The port argument may be omitted, in
which case it defaults to the value returned by current-input-port.

(port-file-name port) STklos

procedure

STklos Reference Manual

Standard Procedures 73

Returns the file name used to open port; port must be a file port.

(port-idle-register! port thunk) STklos

procedure(port-idle-unregister! port thunk)
(port-idle-reset! port)

port-idle-register! allows to register thunk as an idle handler when reading on
port. That means that thunk will be called continuously while waiting an input on
port (and only while using a reading primitive on this port). port-idle-unregister!
can be used to unregister a handler previously set by port-idle-register!. The
primitive port-idle-reset! unregisters all the handlers set on port.

Hereafter is a (not too realistic) example: a message will be displayed repeatedly until
a sexpr is read on the current input port.

(let ((idle (lambda () (display "Nothing to read!\n"))))
(port-idle-register! (current-input-port) idle)
(let ((result (read)))
(port-idle-unregister! (current-input-port) idle)
result))

(port-closed? port) STklos

procedure

Returns #t if port is closed and #f otherwise.

4.11.2 Input

(read) R5RS

procedure(read port)

Read converts external representations of Scheme objects into the objects themselves.
Read returns the next object parsable from the given input port, updating port to
point to the first character past the end of the external representation of the object.

If an end of file is encountered in the input before any characters are found that
can begin an object, then an end of file object is returned. The port remains open,
and further attempts to read will also return an end of file object. If an end of file is
encountered after the beginning of an object’s external representation, but the exter-
nal representation is incomplete and therefore not parsable, an error is signalled.

The port argument may be omitted, in which case it defaults to the value returned
by current-input-port. It is an error to read from a closed port.

STklos read supports the SRFI-10 (Sharp Comma External Form) # form that
can be used to denote values that do not have a convenient printed representation.
See the SRFI document for more information.

http://srfi.schemers.org/srfi-10/srfi-10.html

STklos Reference Manual

74 Standard Procedures

(read-with-shared-structure) STklos

procedure(read-with-shared-structure port)
(read/ss)
(read/ss port)

read-with-shared-structure is identical to read. It has been added to be compat-
ible with SRFI-38 (External representation of shared structures). STklos always
knew how to deal with recursive input data. read/ss is only a shorter name for
read-with-shared-structure.

(define-reader-ctor tag proc) STklos

procedure

This procedure permits to define a new user to reader constructor procedure at run-
time. It is defined in SRFI-10 (Sharp Comma External Form) document. See SRFI
document for more information.

(define-reader-ctor ’rev (lambda (x y) (cons y x)))
(with-input-from-string "#,(rev 1 2)" read)

⇒ (2 . 1)

(read-char) R5RS

procedure(read-char port)

Returns the next character available from the input port, updating the port to point
to the following character. If no more characters are available, an end of file object
is returned. Port may be omitted, in which case it defaults to the value returned by
current-input-port.

(read-chars size) STklos

procedure(read-chars size port)

Returns a newly allocated string made of size characters read from port. If less
than size characters are available on the input port, the returned string is smaller
than size and its size is the number of available characters. Port may be omitted,
in which case it defaults to the value returned by current-input-port.

(read-chars! str) STklos

procedure(read-chars! str port)

This function reads the characters available from port in the string str by chuncks
whose size is equal to the length of str. The value returned by read-chars!is an
integer indicating the number of characters read. Port may be omitted, in which case
it defaults to the value returned by current-input-port.

This function is similar to read-chars except that it avoids to allocate a new string
for each read.

http://srfi.schemers.org/srfi-38/srfi-38.html
http://srfi.schemers.org/srfi-10/srfi-10.html

STklos Reference Manual

Standard Procedures 75

(define (copy-file from to)
(let* ((size 1024)

(in (open-input-file from))
(out (open-output-file to))
(s (make-string size)))

(let Loop ()
(let ((n (read-chars! s in)))
(cond
((= n size)

(write-chars s out)
(Loop))

(else
(write-chars (substring s 0 n) out)
(close-port out)))))))

(peek-char) R5RS

procedure(peek-char port)

Returns the next character available from the input port, without updating the port
to point to the following character. If no more characters are available, an end of
file object is returned. Port may be omitted, in which case it defaults to the value
returned by current-input-port.

Note: The value returned by a call to peek-char is the same as the value that
would have been returned by a call to read-char with the same port. The only dif-
ference is that the very next call to read-char or peek-char on that port will return
the value returned by the preceding call to peek-char. In particular, a call to peek-
char on an interactive port will hang waiting for input whenever a call to read-char
would have hung.

(eof-object? obj) R5RS

procedure

Returns #t if obj is an end of file object, otherwise returns #f.

(eof-object) STklos

procedure

Returns an end of file object. Note that the special notation #eof is another way to
return such an end of file object.

(char-ready?) R5RS

procedure(char-ready? port)

Returns #t if a character is ready on the input port and returns #f otherwise. If char-
ready returns #t then the next read-char operation on the given port is guaranteed
not to hang. If the port is at end of file then char-ready? returns #t. Port may be
omitted, in which case it defaults to the value returned by current-input-port.

(read-line) STklos

procedure(read-line port)

STklos Reference Manual

76 Standard Procedures

Reads the next line available from the input port port. This function returns 2 values:
the first one is is the string which contains the line read, and the second one is the end
of line delimiter. The end of line delimiter can be an end of file object, a character or
a string in case of a multiple character delimiter. If no more characters are available
on port, an end of file object is returned. Port may be omitted, in which case it
defaults to the value returned by current-input-port.

Note: As said in values, if read-line is not used in the context of call-with-
values, the second value returned by this procedure is ignored.

(read-from-string str) STklos

procedure

Performs a read from the given str. If str is the empty string, an end of file object
is returned.

(read-from-string "123 456") ⇒ 123
(read-from-string "") ⇒ an eof object

(port->string port) STklos

procedure(port->sexp-list port)
(port->string-list port)

All these procedure take a port opened for reading. Port->string reads port until
the it reads an end of file object and returns all the characters read as a string. Port-
>sexp-list) and port->string-list do the same things except that they return a
list of S-expressions and a list of strings respectively. For the following example we
suppose that file "foo" is formed of two lines which contains respectively the number
100 and the string "bar".

(port->sexp-list (open-input-file "foo")) ⇒ (100 "bar")
(port->string-list (open-input-file "foo")) ⇒ ("100" ""bar"")

4.11.3 Output

(write obj) R5RS

procedure(write obj port)

Writes a written representation of obj to the given port. Strings that appear in the
written representation are enclosed in doublequotes, and within those strings backslash
and doublequote characters are escaped by backslashes. Character objects are written
using the #\ notation. Write returns an unspecified value. The port argument may
be omitted, in which case it defaults to the value returned by current-output-port.

(write* obj) STklos

procedure(write* obj port)

Writes a written representation of obj to the given port. The main difference with
the write procedure is that write* handles data structures with cycles. Circular

STklos Reference Manual

Standard Procedures 77

structure written by this procedure use the ‘‘#n=’’ and ‘‘#n#’’ notations (see
Circular-structure).

(write-with-shared-structure obj) STklos

procedure(write-with-shared-structure obj port)
(write-with-shared-structure obj port optarg)
(write/ss obj)
(write/ss obj port)
(write/ss obj port optarg)

write-with-shared-structure has been added to be compatible with SRFI-38
(External representation of shared structures). It is is identical to write*, except that
it accepts one more parameter (optarg). This parameter, which is not specified in
SRFI-38 (External representation of shared structures), is always ignored. write/ss
is only a shorter name for write-with-shared-structure.

(display obj) R5RS

procedure(display obj port)

Writes a representation of obj to the given port. Strings that appear in the written
representation are not enclosed in doublequotes, and no characters are escaped within
those strings. Character objects appear in the representation as if written by write-
char instead of by write. Display returns an unspecified value. The port argument
may be omitted, in which case it defaults to the value returned by current-output-
port.

Rationale: Write is intended for producing machine-readable output and display
is for producing human-readable output.

(newline) R5RS

procedure(newline port)

Writes an end of line to port. Exactly how this is done differs from one operating
system to another. Returns an unspecified value. The port argument may be omitted,
in which case it defaults to the value returned by current-output-port.

(write-char char) R5RS

procedure(write-char char port)

Writes the character char (not an external representation of the character) to the
given port and returns an unspecified value. The port argument may be omitted, in
which case it defaults to the value returned by current-output-port.

(write-chars str) STklos

procedure(write-char str port)

Writes the character of string str to the given port and returns an unspecified value.
The port argument may be omitted, in which case it defaults to the value returned
by current-output-port. Note: This function is generally faster than display for
strings. Furthermore, this primitive does not use the buffer associated to port.

http://srfi.schemers.org/srfi-38/srfi-38.html

STklos Reference Manual

78 Standard Procedures

(format port str obj ...) STklos

procedure(format str obj)

Writes the objs to the given port, according to the format string str. Str is written
literally, except for the following sequences:

• ~a or ~A is replaced by the printed representation of the next obj.

• ~s or ~S is replaced by the “slashified” printed representation of the next obj.

• ~w or ~W is replaced by the printed representation of the next obj (circular
structures are correctly handled and printed using write*).

• ~d or ~D is replaced by the decimal printed representation of the next obj (which
must be a number).

• ~x or ~X is replaced by the hexadecimal printed representation of the next obj
(which must be a number).

• ~o or ~O is replaced by the octal printed representation of the next obj (which
must be a number).

• ~b or ~B is replaced by the binary printed representation of the next obj (which
must be a number).

• ~c or ~C is replaced by the printed representation of the next obj (which must
be a character).

• ~y or ~Y is replaced by the pretty-printed representation of the next obj. The
standard pretty-printer is used here.

• ~? is replaced by the result of the recursive call of format with the two next
obj.

• ~k or ~K is another name for ~?

• ~[w[,d]]f or ~[w[,d]]F is replaced by the printed representation of next obj
(which must be a number) with width w and d digits after the decimal. Even-
tually, d may be omitted.

• ~~ is replaced by a single tilde character.

• ~% is replaced by a newline

• ~t or ~t is replaced by a tabulation character.

• ~& is replaced by a newline character if it is known that the previous character
was not a newline

• ~_ is replaced by a space

• ~h or ~H provides some help

STklos Reference Manual

Standard Procedures 79

Port can be a boolean or a port. If port is #t, output goes to the current output
port; if port is #f, the output is returned as a string. Otherwise, the output is printed
on the specified port.

(format #f "A test.") ⇒ "A test."
(format #f "A ~a." "test") ⇒ "A test."
(format #f "A ~s." "test") ⇒ "A \"test\"."
(format "~8,2F" 1/3) ⇒ " 0.33"
(format "~6F" 32) ⇒ " 32"
(format "~1,2F" 4321) ⇒ "4321.00"
(format "~1,2F" (sqrt -3.9)) ⇒ "0.00+1.97i"
(format "#d~d #x~x #o~o #b~b~%" 32 32 32 32)

⇒ "#d32 #x20 #o40 #b100000\n"
(format #f "~&1~&~&2~&~&~&3~%")

⇒ "1\n2\n3\n"
(format "~a ~? ~a" ’a "~s" ’(new) ’test)

⇒ "a new test"

Note: The second form of format is compliant with SRFI-28 (Basic Format Strings).
That is, when port is omitted, the output is returned as a string as if port was given
the value #f.

Note: Since version 0.58, format is also compliant with SRFI-48 (Intermediate

Format Strings).

(flush-output-port) STklos

procedure(flush-output-port port)

Flushes the buffer associated with the given output port. The port argument may
be omitted, in which case it defaults to the value returned by current-output-port

4.11.4 System interface

(load filename) R5RS

procedure

Filename should be a string naming an existing file containing Scheme expressions.
Load has been extended in STklos to allow loading of file containing Scheme com-
piled code as well as object files (aka shared objects). The loading of object files is
not available on all architectures. The value returned by load is void.

If the file whose name is filename cannot be located, load will try to find it in
one of the directories given by load-path with the suffixes given by load-suffixes.

(try-load filename) STklos

procedure

try-load tries to load the file named filename. As load, try-load tries to find the
file given the current load path and a set of suffixes if filename cannot be loaded.
If try-load is able to find a readable file, it is loaded, and try-load returns #t.
Otherwise, try-load retuns #f.

http://srfi.schemers.org/srfi-28/srfi-28.html
http://srfi.schemers.org/srfi-48/srfi-48.html

STklos Reference Manual

80 Standard Procedures

(find-path str) STklos

procedure(find-path str path)
(find-path str path suffixes)

In its first form, find-path returns the path name of the file that should be loaded by
the procedure load given the name str. The string returned depends of the current
load path and of the currently accepted suffixes.

The other forms of find-path are more general and allow to give a path list (a
list of strings representing supposed directories) and a set of suffixes (given as a list
of strings too) to try for finding a file. If no file is found, find-path returns #f.

For instance, on a ”classical” Unix box:

(find-path "passwd" ’("/bin" "/etc" "/tmp"))
⇒ "/etc/passwd"

(find-path "stdio" ’("/usr" "/usr/include") ’("c" "h" "stk"))
⇒ "/usr/include/stdio.h"

(current-loading-file) STklos

procedure

Returns the path of the file that is currently being load.

(require string) STklos

procedure(provide string)
(require/provide string)
(provided? string)

Require loads the file whose name is string if it was not previously “provided”.
Provide permits to store string in the list of already provided files. Providing a
file permits to avoid subsequent loads of this file. Require/provide is more or less
equivalent to a require followed by a provide. Provided? returns #t if string was
already provided; it returns #f otherwise.

4.12 Keywords

Keywords are symbolic constants which evaluate to themselves. A keyword is a symbol whose
first (or last) character is a colon (“:”).

(keyword obj) STklos

procedure

Returns #t if obj is a keyword, otherwise returns #f.

(keyword? ’foo) ⇒ #f
(keyword? ’:foo) ⇒ #t
(keyword? ’foo:) ⇒ #t
(keyword? :foo) ⇒ #t
(keyword? foo:) ⇒ #t

STklos Reference Manual

Standard Procedures 81

(make-keyword s) STklos

procedure

Builds a keyword from the given s. The parameter s must be a symbol or a string.

(make-keyword "test") ⇒ :test
(make-keyword ’test) ⇒ :test
(make-keyword ":hello") ⇒ ::hello

(keyword->string key) STklos

procedure

Returns the name of key as a string. The result does not contain a colon.

(key-get list key) STklos

procedure(key-get list key default)

List must be a list of keywords and their respective values. key-get scans the list
and returns the value associated with the given key. If key does not appear in an odd
position in list, the specified default is returned, or an error is raised if no default
was specified.

(key-get ’(:one 1 :two 2) :one) ⇒ 1
(key-get ’(:one 1 :two 2) :four #f) ⇒ #f
(key-get ’(:one 1 :two 2) :four) ⇒ error

(key-set! list key value) STklos

procedure

List must be a list of keywords and their respective values. key-set! sets the value
associated to key in the keyword list. If the key is already present in list, the keyword
list is physically changed.

(let ((l (list :one 1 :two 2)))
(set! l (key-set! l :three 3))
(cons (key-get l :one)

(key-get l :three))) ⇒ (1 . 3)

(key-delete list key) STklos

procedure(key-delete! list key)

List must be a list of keywords and their respective values. key-delete remove the
key and its associated value of the keyword list. The key can be absent of the list.

key-delete! does the same job than key-delete by physically modifying its list
argument.

(key-delete ’(:one 1 :two 2) :two) ⇒ (:one 1)
(key-delete ’(:one 1 :two 2) :three) ⇒ (:one 1 :two 2)

4.13 Hash Tables

STklos Reference Manual

82 Standard Procedures

A hash table consists of zero or more entries, each consisting of a key and a value. Given
the key for an entry, the hashing function can very quickly locate the entry, and hence the
corresponding value. There may be at most one entry in a hash table with a particular key,
but many entries may have the same value.

STklos hash tables grow gracefully as the number of entries increases, so that there are
always less than three entries per hash bucket, on average. This allows for fast lookups
regardless of the number of entries in a table.

STklos hash tables procedures are identical to the ones defined in SRFI-69 (Basic Hash

Tables). Note that the default comparison function is eq? whereas it is equal? in this SRFI.
See ?? for more information.

(make-hash-table) STklos

procedure(make-hash-table comparison)
(make-hash-table comparison hash)

Make-hash-table admits three different forms. The most general form admit two
arguments. The first argument is a comparison function which determines how keys
are compared; the second argument is a function which computes a hash code for an
object and returns the hash code as a non negative integer. Objets with the same
hash code are stored in an A-list registered in the bucket corresponding to the key.

If omitted,

• hash defaults to the hash-table-hash procedure (see hash-table-hash).

• comparison defaults to the eq? procedure (see eq-).

Consequently,

(define h (make-hash-table))

is equivalent to

(define h (make-hash-table eq? hash-table-hash))

An interesting example is

(define h (make-hash-table string-ci=? string-length))

which defines a new hash table which uses string-ci=? for comparing keys. Here,
we use the string-length as a (very simple) hashing function. Of course, a function
which gives a key depending of the characters composing the string gives a better
repartition and should probably enhance performances. For instance, the following
call to make-hash-table should return a more efficient, even if not perfect, hash table:

http://srfi.schemers.org/srfi-69/srfi-69.html

STklos Reference Manual

Standard Procedures 83

(make-hash-table
string-ci=?
(lambda (s)
(let ((len (string-length s)))
(do ((h 0) (i 0 (+ i 1)))

((= i len) h)
(set! h

(+ h (char->integer
(char-downcase (string-ref s i)))))))))

Note: Hash tables with a comparison function equal to eq? or string=? are handled
in an more efficient way (in fact, they don’t use the hash-table-hash function to
speed up hash table retrievals).

(hash-table? obj) STklos

procedure

Returns #t if obj is a hash table, returns #f otherwise.

(hash-table-hash obj) STklos

procedure

Computes a hash code for an object and returns this hash code as a non negative
integer. A property of hash-table-hash is that

(equal? x y) ⇒ (equal? (hash-table-hash x) (hash-table-hash y)

as the the Common Lisp sxhash function from which this procedure is modeled.

(alist->hash-table alist) STklos

procedure(alist->hash-table alist comparison)
(alist->hash-table alist comparison hash)

Returns hash-table built from the “association list” alist. This function maps the
car of every element in alist to the cdr of corresponding elements in alist. the
comparison and hash functions are interpreted as in make-hash-table. If some key
occurs multiple times in alist, the value in the first association will take precedence
over later ones.

(hash-table->alist hash) STklos

procedure

Returns an “association list” built from the entries in hash. Each entry in hash will
be represented as a pair whose car is the entry’s key and whose cdr is its value.

Note: the order of pairs in the resulting list is unspecified.

(let ((h (make-hash-table)))
(dotimes (i 5)
(hash-table-set! h i (number->string i)))

(hash-table->alist h))
⇒ ((3 . "3") (4 . "4") (0 . "0")

(1 . "1") (2 . "2"))

STklos Reference Manual

84 Standard Procedures

(hash-table-set! hash key value) STklos

procedure

Enters an association between key and value in thehash table. The value returned
by hash-table-set! is void.

(hash-table-ref hash key) STklos

procedure(hash-table-ref hash key thunk)

Returns the value associated with key in the given hash table. If no value has been
associated with key in hash, the specified thunk is called and its value is returned;
otherwise an error is raised.

(define h1 (make-hash-table))
(hash-table-set! h1 ’foo (list 1 2 3))
(hash-table-ref h1 ’foo) ⇒ (1 2 3)
(hash-table-ref h1 ’bar

(lambda () ’absent)) ⇒ absent
(hash-table-ref h1 ’bar) ⇒ error
(hash-table-set! h1 ’(a b c) ’present)
(hash-table-ref h1 ’(a b c)

(lambda () ’absent)) ⇒ absent

(define h2 (make-hash-table equal?))
(hash-table-set! h2 ’(a b c) ’present)
(hash-table-ref h2 ’(a b c)) ⇒ present

(hash-table-ref/default hash key) STklos

procedure

This function is equivalent to

(hash-table-ref hash key (lambda () default))

(hash-table-delete! hash key) STklos

procedure

Deletes the entry for key in hash, if it exists. Result of hash-table-delete! is void.

(define h (make-hash-table))
(hash-table-set! h ’foo (list 1 2 3))
(hash-table-ref h ’foo) ⇒ (1 2 3)
(hash-table-delete! h ’foo)
(hash-table-ref h ’foo

(lambda () ’absent) ⇒ absent

(hash-table-exists? hash key) STklos

procedure

Returns #t if there is any association of key in hash. Returns #f otherwise.

STklos Reference Manual

Standard Procedures 85

(hash-table-update! hash key update-fun thunk) STklos

procedure(hash-table-update!/default hash key update-fun default)

Update the value associated to key in table hash if key is already in table with the
value (update-fun current-value). If no value is associated to key, a new entry in
the table is first inserted before updating it (this new entry being the result of calling
thunk).

Note that the expression

(hash-table-update!/default hash key update-fun default)

is equivalent to

(hash-table-update! hash key update-fun (lambda () default))

(let ((h (make-hash-table))
(1+ (lambda (n) (+ n 1))))

(hash-table-update!/default h ’test 1+ 100)
(hash-table-update!/default h ’test 1+)
(hash-table-ref h ’test)) ⇒ 102

(hash-table-for-each hash proc) STklos

procedure(hash-table-walk hash proc)

Proc must be a procedure taking two arguments. Hash-table-for-each calls proc
on each key/value association in hash, with the key as the first argument and the
value as the second. The value returned by hash-table-for-each is void.

Note: The order of application of proc is unspecified.

Note: hash-table-walk is another name for hash-table-for-each (this is the name
used in SRFI-69 (Basic Hash Tables)).

(let ((h (make-hash-table))
(sum 0))

(hash-table-set! h ’foo 2)
(hash-table-set! h ’bar 3)
(hash-table-for-each h (lambda (key value)

(set! sum (+ sum value))))
sum) ⇒ 5

(hash-table-map hash proc) STklos

procedure

Proc must be a procedure taking two arguments. Hash-table-map calls proc on each
key/value association in hash, with the key as the first argument and the value as the
second. The result of hash-table-map is a list of the values returned by proc, in an
unspecified order.

STklos Reference Manual

86 Standard Procedures

Note: The order of application of proc is unspecified.

(let ((h (make-hash-table)))
(dotimes (i 5)
(hash-table-set! h i (number->string i)))

(hash-table-map h (lambda (key value)
(cons key value))))

⇒ ((3 . "3") (4 . "4") (0 . "0") (1 . "1") (2 . "2"))

(hash-table-keys hash) STklos

procedure(hash-table-values hash)

Returns the keys or the values of hash.

(hash-table-fold hash func init-value) STklos

procedure

This procedure calls func for every association in hash with three arguments: the key
of the association key, the value of the association value, and an accumulated value,
val. Val is init-value for the first invocation of func, and for subsequent invocations
of func, the return value of the previous invocation of func. The value final-value
returned by hash-table-fold is the return value of the last invocation of func. The
order in which func is called for different associations is unspecified.

For instance, the following expression

(hash-table-fold ht (lambda (k v acc) (+ acc 1)) 0)

computes the number of associations present in the ht hash table.

(hash-table-copy hash) STklos

procedure

Returns a copy of hash.

(hash-table-merge! hash1 hash2) STklos

procedure

Adds all mappings in hash2 into hash1 and returns the resulting hash table. This
function may modify hash1 destructively.

(hash-table-equivalence-function hash) STklos

procedure

Returns the equivalence predicate used for keys in hash.

(hash-table-hash-function hash) STklos

procedure

Returns the hash function used for keys in hash.

(hash-table-size hash) STklos

procedure

STklos Reference Manual

Standard Procedures 87

Returns the number of entries in the hash.

(hash-table-stats hash) STklos

procedure(hash-table-stats hash port)

Prints overall information about hash, such as the number of entries it contains, the
number of buckets in its hash array, and the utilization of the buckets. Informations
are printed on port. If no port is given to hash-table-stats, information are printed
on the current output port (see current-output-port).

4.14 Dates and Times

STklos stores dates and times with a compact representation which consists is an integer
which represents the number of seconds elapsed since the Epoch (00:00:00 on January 1, 1970,
Coordinated Universal Time –UTC). Dates can also be represented with date structures.

(current-time) STklos

procedure

Returns the time since the Epoch (that is 00:00:00 UTC, January 1, 1970), measured
in seconds.

(full-current-time) STklos

procedure

Returns the time of the day as a pair where

• the first element is the time since the Epoch (that is 00:00:00 UTC, January 1,
1970), measured in seconds.

• the second element is the number of microseconds in the given second.

(seconds->date n) STklos

procedure

Convert the date n expressed as a number of seconds since the Epoch to a date.

(seconds->string format n) STklos

procedure

Convert a date expressed in seconds using the string format as a specification. Con-
ventions for format are given below:

• ~~ a literal ~

• ~a locale’s abbreviated weekday name (Sun...Sat)

• ~A locale’s full weekday name (Sunday...Saturday)

• ~b locale’s abbreviate month name (Jan...Dec)

• ~B locale’s full month day (January...December)

• ~c locale’s date and time (e.g., Fri Jul 14 20:28:42-0400 2000)

STklos Reference Manual

88 Standard Procedures

• ~d day of month, zero padded (01...31)

• ~D date (mm/dd/yy)

• ~e day of month, blank padded (1...31)

• ~f seconds+fractional seconds, using locale’s decimal separator (e.g. 5.2).

• ~h same as ~b

• ~H hour, zero padded, 24-hour clock (00...23)

• ~I hour, zero padded, 12-hour clock (01...12)

• ~j day of year, zero padded

• ~k hour, blank padded, 24-hour clock (00...23)

• ~l hour, blank padded, 12-hour clock (01...12)

• ~m month, zero padded (01...12)

• ~M minute, zero padded (00...59)

• ~n new line

• ~p locale’s AM or PM

• ~r time, 12 hour clock, same as ~I:~M:~S ~p

• ~s number of full seconds since ”the epoch” (in UTC)

• ~S second, zero padded (00...61)

• ~t horizontal tab

• ~T time, 24 hour clock, same as ~H:~M:~S

• ~U week number of year with Sunday as first day of week (00...53)

• ~V weekISO 8601:1988 week number of year (01...53) (week 1 is the first week
that has at least 4 days in the current year, and with Monday as the first day
of the week)

• ~w day of week (1...7, 1 is Monday)

• ~W week number of year with Monday as first day of week (01...52)

• ~x week number of year with Monday as first day of week (00...53)

• ~X locale’s date representation, for example: ”07/31/00”

• ~y last two digits of year (00...99)

• ~Y year

STklos Reference Manual

Standard Procedures 89

• ~z time zone in RFC-822 style

• ~Z symbol time zone

(seconds->list sec) STklos

procedure

Returns a keyword list for the date given by sec (a date based on the Epoch). The
keyed values returned are

• second : 0 to 59 (but can be up to 61 to allow for leap seconds)

• minute : 0 to 59

• hour : 0 to 23

• day : 1 to 31

• month : 1 to 12

• year : e.g., 2002

• week-day : 0 (Sunday) to 6 (Saturday)

• year-day : 0 to 365 (365 in leap years)

• dst : indication about daylight savings time. See date-dst

• tz : the difference between Coordinated Universal Time (UTC) and local stan-
dard time in seconds.

(seconds->list (current-time))
⇒ (:second 51 :minute 26 :hour 19

:day 5 :month 11 :year 2004
:week-day 5 :year-day 310
:dst 0 :tz -3600)

(current-date) STklos

procedure

Returns the current system date.

(make-date :key second minute hour day month year) STklos

procedure

Build a date from its argument. hour, minute, second default to 0; day and month
default to 1; year defaults to 1970

(date? obj) STklos

procedure

Return #t if obj is a date, and otherwise returns #f.

(date-second d) STklos

procedure

Return the second of date d, in the range 0 to 59.

STklos Reference Manual

90 Standard Procedures

(date-minute d) STklos

procedure

Return the minute of date d, in the range 0 to 59.

(date-hour d) STklos

procedure

Return the hour of date d, in the range 0 to 23.

(date-day d) STklos

procedure

Return the day of date d, in the range 1 to 31

(date-month d) STklos

procedure

Return the month of date d, in the range 1 to 12

(date-year d) STklos

procedure

Return the year of date d.

(date-week-day d) STklos

procedure

Return the week day of date d, in the range 0 to 6 (0 is Sunday).

(date-year-day d) STklos

procedure

Return the the number of days since January 1 of date d, in the range 1 to 366.

(date-dst d) STklos

procedure

Return an indication about daylight saving adjustment:

• 0 if no daylight saving adjustment

• 1 if daylight saving adjustment

• -1 if the information is not available

(date-tz d) STklos

procedure

Return the time zone of date d.

(date->seconds d) STklos

procedure

Convert the date d to the number of seconds since the Epoch.

(date->string format d) STklos

procedure

Convert the date dusing the string format as a specification. Conventions for format
are the same as the one of seconds–string.

STklos Reference Manual

Standard Procedures 91

(date) STklos

procedure

Returns the current date in a string

4.15 Processes

STklos provides access to Unix processes as first class objects. Basically, a process contains
several informations such as the standard system process identification (aka PID on Unix
Systems), the files where the standard files of the process are redirected.

(run-process command p1 p2 ...) STklos

procedure

run-process creates a new process and run the executable specified in command. The
p correspond to the command line arguments. The following values of p have a special
meaning:

• :input permits to redirect the standard input file of the process. Redirection
can come from a file or from a pipe. To redirect the standard input from a file,
the name of this file must be specified after :input. Use the special keyword
:pipe to redirect the standard input from a pipe.

• :output permits to redirect the standard output file of the process. Redirection
can go to a file or to a pipe. To redirect the standard output to a file, the name
of this file must be specified after :output. Use the special keyword :pipe to
redirect the standard output to a pipe.

• :error permits to redirect the standard error file of the process. Redirection
can go to a file or to a pipe. To redirect the standard error to a file, the name
of this file must be specified after error. Use the special keyword :pipe to
redirect the standard error to a pipe.

• :wait must be followed by a boolean value. This value specifies if the process
must be run asynchronously or not. By default, the process is run asynchronous-
ly (i.e. :wait is #f).

• :host must be followed by a string. This string represents the name of the
machine on which the command must be executed. This option uses the external
command rsh. The shell variable PATH must be correctly set for accessing it
without specifying its abolute path.

• :fork must be followed by a boolean value. This value specifies if a fork system
call must be done before running the process. If the process is run without fork

the Scheme program is lost. This feature mimics the “exec” primitive of the
Unix shells. By default, a fork is executed before running the process (i.e. :fork
is #t). This option works on Unix implementations only.

The following example launches a process which executes the Unix command ls with
the arguments -l and /bin. The lines printed by this command are stored in the file
/tmp/X

(run-process "ls" "-l" "/bin" :output "/tmp/X")

STklos Reference Manual

92 Standard Procedures

(process? obj) STklos

procedure

Returns #t if obj is a process , otherwise returns #f.

(process-alive? proc) STklos

procedure

Returns #t if process proc is currently running, otherwise returns #f.

(process-pid proc) STklos

procedure

Returns an integer which represents the Unix identification (PID) of the processus.

(process-input proc) STklos

procedure(process-output proc)
(process-error proc)

Returns the file port associated to the standard input, output or error of proc, if it
is redirected in (or to) a pipe; otherwise returns #f. Note that the returned port is
opened for reading when calling process-output or process-error; it is opened for
writing when calling process-input.

(process-wait proc) STklos

procedure

Stops the current process (the Scheme process) until proc completion. Process-wait
returns #f when proc is already terminated; it returns #t otherwise.

(process-exit-status proc) STklos

procedure

Returns the exit status of proc if it has finished its execution; returns #f otherwise.

(process-send-signal proc sig) STklos

procedure

Sends the integer signal sig to proc. Since value of sig is system dependant, use the
symbolic defined signal constants to make your program independant of the running
system (see signals). The result of process-send-signal is void.

(process-kill proc) STklos

procedure

Kills (brutally) process. The result of process-kill is void. This procedure is
equivalent to

(process-send-signal process ’SIGTERM)

(process-stop proc) STklos

procedure(process-continue proc)

Process-stop stops the execution of proc and process-continue resumes its exe-
cution. They are equivalent, respectively, to

STklos Reference Manual

Standard Procedures 93

(process-send-signal process ’SIGSTOP)
(process-send-signal process ’SIGCONT)

(process-list) STklos

procedure

Returns the list of processes which are currently running (i.e. alive).

(fork) STklos

procedure(fork thunk)

This procedure is a wrapper around the standard Unix fork system call which permits
to create a new (heavy) process. When called without parameter, this procedure
returns two times (one time in the parent process and one time in the child process).
The value returned in the parent process is a process object representing the child
process and the value returned in the child process is always the value #f. When
called with a parameter (which must be a thunk), the new process excutes thunk and
terminate it execution when thunk returns. The value returned in the parent process
is a process object representing the child process.

4.16 Sockets

STklos defines sockets, on systems which support them, as first class objects. Sockets
permits processes to communicate even if they are on different machines. Sockets are useful
for creating client-server applications.

(make-client-socket hostname port-number) STklos

procedure(make-client-socket hostname port_number line-buffered)

make-client-socket returns a new socket object. This socket establishes a link
between the running program and the application listening on port port-number of
hostname. If the optional argument line-buffered has a true value, a line buffered
policy is used when writing to the client socket (i.e. characters on the socket are
tranmitted as soon as a #\newline character is encountered). The default value of
line-buffered is #t.

(make-server-socket) STklos

procedure(make-server-socket port-number)

make-server-socket returns a new socket object. If port-number is specified, the
socket is listening on the specified port; otherwise, the communication port is chosen
by the system.

(socket-shutdown sock) STklos

procedure(socket-shutdown sock close)

Socket-shutdown shutdowns the connection associated to socket. If the socket is a
server socket, socket-shutdown is called on all the client sockets connected to this
server. Close indicates if the the socket must be closed or not, when the connection
is destroyed. Closing the socket forbids further connections on the same port with the

STklos Reference Manual

94 Standard Procedures

socket-accept procedure. Omitting a value for close implies the closing of socket.

The following example shows a simple server: when there is a new connection on
the port number 12345, the server displays the first line sent to it by the client,
discards the others and go back waiting for further client connections.

(let ((s (make-server-socket 12345)))
(let loop ()

(let ((ns (socket-accept s)))
(format #t "I’ve read: ~A\n"

(read-line (socket-input ns)))
(socket-shutdown ns #f)
(loop))))

(socket-accept socket) STklos

procedure(socket-accept socket line-buffered)

socket-accept waits for a client connection on the given socket. If no client is al-
ready waiting for a connection, this procedure blocks its caller; otherwise, the first
connection request on the queue of pending connections is connected and socket-
accept returns a new client socket to serve this request. This procedure must be
called on a server socket created with make-server-socket. The result of socket-
accept is undefined. Line-buffered indicates if the port should be considered as a
line buffered. If line-buffered is omitted, it defaults to #t.

The following example is a simple server which waits for a connection on the port
123454. Once the connection with the distant program is established, we read a line
on the input port associated to the socket and we write the length of this line on its
output port.

(let* ((server (make-server-socket 13345))
(client (socket-accept server))
(l (read-line (socket-input client))))

(format (socket-output client)
"Length is: ~an" (string-length l))

(socket-shutdown server))

Note that shutting down the server socket suffices here to close also the connection
to client.

(socket? obj) STklos

procedure

Returns #t if socket is a socket, otherwise returns #f.

Under Unix, you can simply connect to a listening socket with the telnet command. With the given example,4

this can be achieved by typing the following command in a window shell:

$ telnet localhost 12345

STklos Reference Manual

Standard Procedures 95

(socket-server? obj) STklos

procedure

Returns #t if socket is a server socket, otherwise returns #f.

(socket-client? obj) STklos

procedure

Returns #t if socket is a client socket, otherwise returns #f.

(socket-host-name socket) STklos

procedure

Returns a string which contains the name of the distant host attached to socket. If
socket has been created with make-client-socket this procedure returns the official
name of the distant machine used for connection. If socket has been created with
make-server-socket, this function returns the official name of the client connected
to the socket. If no client has used yet socket, this function returns #f.

(socket-host-address socket) STklos

procedure

Returns a string which contains the IP number of the distant host attached to socket.
If socket has been created with make-client-socket this procedure returns the IP
number of the distant machine used for connection. If socket has been created with
make-server-socket, this function returns the address of the client connected to the
socket. If no client has used yet socket, this function returns #f.

(socket-local-address socket) STklos

procedure

Returns a string which contains the IP number of the local host attached to socket.

(socket-port-number socket) STklos

procedure

Returns the integer number of the port used for socket.

(socket-input socket) STklos

procedure(socket-output socket)

Returns the file port associated for reading or writing with the program connected
with socket. If no connection has already been established, these functions return
#f.

The following example shows how to make a client socket. Here we create a socket on
port 13 of the machine kaolin.unice.fr5:

(let ((s (make-client-socket "kaolin.unice.fr" 13)))
(format #t "Time is: ~A~%" (read-line (socket-input s)))
(socket-shutdown s))

Port 13 is generally used for testing: making a connection to it permits to know the distant system’s idea of5

the time of day.

STklos Reference Manual

96 Standard Procedures

4.17 System Procedures

4.17.1 File Primitives

(temporary-file-name) STklos

procedure

Generates a unique temporary file name. The value returned by temporary-file-
name is the newly generated name of #f if a unique name cannot be generated.

(rename-file string1 string2) STklos

procedure

Renames the file whose path-name is string1 to a file whose path-name is string2.
The result of rename-file is void.

(remove-file string) STklos

procedure

Removes the file whose path name is given in string. The result of remove-file is
void.

(copy-file string1 string2) STklos

procedure

Copies the file whose path-name is string1 to a file whose path-name is string2. If
the file string2 already exists, its content prior the call to copy-file is lost. The
result of copy-file is void.

(copy-port in out) STklos

procedure(copy-port in out max)

Copy the content of port in, which must be opened for readind, on port out, which
must be opened for writing. If max is nont specified, All the characters from the input
port are copied on ouput port. If max is specified, it must be an integer indicatin the
maximum number of characters which are copied from in to out.

(file-is-directory? string) STklos

procedure(file-is-regular? string)
(file-is-readable? string)
(file-is-writable? string)
(file-is-executable? string)
(file-exists? string)

Returns #t if the predicate is true for the path name given in string; returns #f
otherwise (or if string denotes a file which does not exist).

(file-size string) STklos

procedure

Returns the size of the file whose path name is given in string.If string denotes a
file which does not exist, file-size returns #f.

STklos Reference Manual

Standard Procedures 97

(getcwd) STklos

procedure

Returns a string containing the current working directory.

(chmod str) STklos

procedure(chmod str option1 ...)

Change the access mode of the file whose path name is given in string. The options
must be composed of either an integer or one of the following symbols read, write
or execute. Giving no option to chmod is equivalent to pass it the integer 0. If the
operation succeeds, chmod returns #t; otherwise it returns #f.

(chmod "~/.stklos/stklosrc" ’read ’execute)
(chmod "~/.stklos/stklosrc" #o644)

(chdir dir) STklos

procedure

Changes the current directory to the directory given in string dir.

(expand-file-name path) STklos

procedure

Expand-file-name expands the filename given in path to an absolute path.

;; Current directory is ~eg/stklos (i.e. /users/eg/stklos)

(expand-file-name "..") ⇒ "/users/eg"
(expand-file-name "~eg/../eg/bin") ⇒ "/users/eg/bin"
(expand-file-name "~/stklos)" ⇒ "/users/eg/stk"

(canonical-file-name path) STklos

procedure

Expands all symbolic links in path and returns its canonicalized absolute path name.
The resulting path does not have symbolic links. If path doesn’t designate a valid
path name, canonical-file-name returns #f.

(decompose-file-name string) STklos

procedure

Returns an “exploded” list of the path name components given in string. The first
element in the list denotes if the given string is an absolute path or a relative one,
being ”/” or ”.” respectively. Each component of this list is a string.

(decompose-file-name "/a/b/c.stk") ⇒ ("/" "a" "b" "c.stk")
(decompose-file-name "a/b/c.stk") ⇒ ("." "a" "b" "c.stk")

(winify-file-name fn) STklos

procedure

On Win32 system, when compiled with the Cygwin environment, file names are in-
ternally represented in a POSIX-like internal form. Winify-file-bame permits to
obtain back the Win32 name of an interned file name

STklos Reference Manual

98 Standard Procedures

(winify-file-name "/tmp")
⇒ "C:\\cygwin\\tmp"

(list (getcwd) (winify-file-name (getcwd)))
⇒ ("//saxo/homes/eg/Projects/,(stklos)"

"\\\\saxo\\homes\\eg\\Projects\\,(stklos)")

(posixify-file-name fn) STklos

procedure

On Win32 system, when compiled with the Cygwin environment, file names are in-
ternally represented in a POSIX-like internal form. posixify-file-bame permits to
obtain the interned file name from its external form. file name

(posixify-file-name "C:\\cygwin\\tmp")
⇒ "/tmp"

(basename str) STklos

procedure

Returns a string containing the last component of the path name given in str.

(basename "/a/b/c.stk") ⇒ "c.stk"

(dirname str) STklos

procedure

Returns a string containing all but the last component of the path name given in str.

(dirname "/a/b/c.stk") ⇒ "/a/b"

(file-separator) STklos

procedure

Retuns the operating system file separator as a character. This is typically #\/ on
Unix (or Cygwin) systems and #\\ on Windows.

(make-path dirname name) STklos

procedure

Builds a file name from the directory dirname and name.

(glob pattern ...) STklos

procedure

Glob performs file name “globbing” in a fashion similar to the csh shell. Glob returns
a list of the filenames that match at least one of pattern arguments. The pattern
arguments may contain the following special characters:

• ? Matches any single character.

• * Matches any sequence of zero or more characters.

• [chars] Matches any single character in chars. If chars contains a sequence of
the form a-b then any character between a and b (inclusive) will match.

STklos Reference Manual

Standard Procedures 99

• \x Matches the character x.

• {a,b,...} Matches any of the strings a, b, etc.

As with csh, a ’.’ at the beginning of a file’s name or just after a ’/ must be matched
explicitly or with a @{@} construct. In addition, all ’/’ characters must be matched
explicitly.

If the first character in a pattern is ’~’ then it refers to the home directory of the
user whose name follows the ’~’. If the ’~’ is followed immediately by ‘/’ then the
value of the environment variable HOME is used.

Glob differs from csh globbing in two ways. First, it does not sort its result list
(use the sort procedure if you want the list sorted). Second, glob only returns the
names of files that actually exist; in csh no check for existence is made unless a pattern
contains a ?, *, or [] construct.

4.17.2 Environment

(getenv str) STklos

procedure(getenv)

Looks for the environment variable named str and returns its value as a string, if
it exists. Otherwise, getenv returns #f. If getenv is called without parameter, it
returns the list of all the environment variables accessible from the program as an
A-list.

(getenv "SHELL")
⇒ "/bin/zsh"

(getenv)
⇒ (("TERM" . "xterm") ("PATH" . "/bin:/usr/bin") ...)

(setenv! var value) STklos

procedure

Sets the environment variable var to value. Var and value must be strings. The
result of setenv! is void.

(setenv! var) STklos

procedure

Unsets the environment variable var. Var must be a strings. The result of unsetenv!
is void.

4.17.3 System Informations

(running-os) STklos

procedure

Returns the name of the underlying Operating System which is running the program.
The value returned by runnin-os is a symbol. For now, this procedure returns either
unix, windows, or cygwin-windows.

STklos Reference Manual

100 Standard Procedures

(hostname) STklos

procedure

Return the host name of the current processor as a string.

(argc) STklos

procedure

Returns the number of argument present on the command line

(argv) STklos

procedure

Returns a list of the arguments given on the shell command line. The interpreter
options are no included in the result

(program-name) STklos

procedure

Returns the invocation name of the current program as a string.

(version) STklos

procedure

Returns a string identifying the current version of the system. A version is consti-
tuted of three numbers separated by a point: the version, the release and sub-release
numbers.

(machine-type) STklos

procedure

Returns a string identifying the kind of machine which is running the program. The
result string is of the form ‘(os-name)-‘(os-version)-‘(processor-type).

(clock) STklos

procedure

Returns an approximation of processor time, in milliseconds, used so far by the pro-
gram.

(sleep n) STklos

procedure

Suspend the execution of the program for at ms milliseconds. Note that due to system
clock resolution, the pause may be a little bit longer. If a signal arrives during the
pause, the execution may be resumed.

(time expr1 expr2 ...) STklos

syntax

Evaluates the expressions expr1, expr2, ... and returns the result of the last expres-
sion. This form prints also the time spent for this evaluation on the current error
port.

(getpid) STklos

procedure

Returns the system process number of the current program (i.e. the Unix pid) as an
integer.

STklos Reference Manual

Standard Procedures 101

4.17.4 Program Arguments Parsing

STklos provides a simple way to parse program arguments with the |parse-arguments|
special form. This form is generally used into the |main| function in a Scheme script. See
SRFI-22 (Running Scheme Scripts on Unix) on how to use a |main| function in a Scheme
program.

(parse-arguments <args> <clause1> <clause2> ...) STklos

procedure

The parse-arguments special form is used to parse the command line arguments of
a Scheme script. The implementation of this form internally uses the GNU C getopt
function. As a consequence parse-arguments accepts options which start with the
’-’ (short option) or ’–’ characters (long option).

The first argument of parse-arguments is a list of the arguments given to the pro-
gram (comprising the program name in the CAR of this list). Following arguments
are clauses. Clauses are described later.

By default, parse-arguments permutes the contents of (a copy) of the arguments
as it scans, so that eventually all the non-options are at the end. However, if the shell
environment variable POSIXLY_CORRECT is set, then option processing stops as soon
as a non-option argument is encountered.

A clause must follow the syntax:

<clause> ⇒ string | <list-clause>
<list clause> ⇒ (<option descr> <expr> ...) | (else <expr> ...)
<option descr> ⇒ (<option name> ‘(<keyword> value)*)
<option name> ⇒ string
<keyword> ⇒ :alternate | :arg | :help

A string clause is used to build the help associated to the command. A list clause
must follow the syntax describes an option. The <expr>s associated to a list claus-
es are executed when the option is recognized. The else clauses is executed when
all parameters have been parsed. The :alternate key permits to have an alternate
name for an option (generally a short or long name if the option name is a short or
long name). The :help is used to provide help about the the option. The :arg is
used when the option admit a parameter: the symbol given after :arg will be bound
to the value of the option argument when the corresponding <expr>s will be executed.

In an else clause the symbol other-arguments is bound to the list of the argu-
ments which are not options.

The following example shows a rather complete usage of the parse-arguments form

http://srfi.schemers.org/srfi-22/srfi-22.html

STklos Reference Manual

102 Standard Procedures

#!/usr/bin/env stklos-script

(define (main args)
(parse-arguments args

"Usage: foo [options] [parameter ...]"
"General options:"
(("verbose" :alternate "v" :help "be more verbose")
(format #t "Seen the verbose option~%"))

(("long" :help "a long option alone")
(format #t "Seen the long option~%"))

(("s" :help "a short option alone")
(format #t "Seen the short option~%"))

"File options:"
(("input" :alternate "f" :arg file

:help "use <file> as input")
(format #t "Seen the input option with ~S argument~%" file))

(("output" :alternate "o" :arg file
:help "use <file> as output")

(format #t "Seen the output option with ~S argument~%" file))
"Misc:"
(("help" :alternate "h"

:help "provides help for the command")
(arg-usage (current-error-port))
(exit 1))

(else
(format #t

"All options parsed. Remaining arguments are ~S~%"
other-arguments))))

The following program invocation

foo -vs --input in -o out arg1 arg2

produces the following output

Seen the verbose option
Seen the short option
Seen the input option with "in" argument
Seen the output option with "out" argument
All options parsed. Remaining arguments are ("arg1" "arg2")

Finally, the program invocation

foo --help

produces the following output

STklos Reference Manual

Standard Procedures 103

Usage: foo ‘(options) ‘(parameter ...)
General options:
--verbose, -v be more verbose
--long a long option alone
-s a short option alone

File options:
--input=<file>, -f <file> use <file> as input
--output=<file>, -o <file> use <file> as output

Misc:
--help, -h provides help for the command

Note:

• Short option can be concatenated. That is,

prog -abc

is equivalent to the following program call

prog -a -b -c

• Any argument following a ’–’ argument is no more considered as an option, even
if it starts with a ’-’ or ’–’.

• Option with a parameter can be written in several ways. For instance to set the
output in the bar file for the previous example can be expressed as

− --output=bar

− -o bar

− -obar

(arg-usage port) STklos

procedure(arg-usage port as-sexpr)

This procedure is only bound inside a parse-arguments form. It pretty prints the
help associated to the clauses of the parse-arguments form on the given port. If the
argument as-sexpr is passed and is not #f, the help strings are printed on port as
S-exprs. This is useful if the help strings need to be manipulated by a program.

4.17.5 Misc. System Procedures

(system string) STklos

procedure

Sends the given string to the system shell /bin/sh. The result of system is the
integer status code the shell returns.

(exec str) STklos

procedure(exec-list str)

STklos Reference Manual

104 Standard Procedures

These procedures execute the command given in str. The command given in str is
passed to /bin/sh. Exec returns a strings which contains all the characters that the
command str has printed on it’s standard output, whereas exec-list returns a list
of the lines which constitute the output of str.

(exec "echo A; echo B") ⇒ "A\nB\n"
(exec-list "echo A; echo B") ⇒ ("A" "B")

(address-of obj) R5RS

procedure

Returns the address of the object obj as an integer.

(exit) STklos

procedure(exit ret-code)

Exits the program with the specified integer return code. If ret-code is omitted, the
program terminates with a return code of 0. If program has registerd exit functions
with register-exit-function!, they are called (in an order which is the reverse of
their call order).

(die message) STklos

procedure(die message status)

Die prints the given message on the current error port and exits the program with
the status value. If status is omitted, it defaults to 1.

(get-password) STklos

procedure

This primitive permits to enter a password (character echoing being turned off). The
value returned by get-password is the entered password as a string.

(register-exit-function! proc) STklos

procedure

This function registers proc as an exit function. This function will be called when
the program exits. When called, proc will be passed one parmater which is the status
given to the exit function. The result of register-exit-function! is undefined.

(let* ((tmp (temporary-file-name))
(out (open-output-file tmp)))

(register-exit-function! (lambda (n)
(when (zero? n)
(remove-file tmp))))

out)

4.18 Signals

STklos Reference Manual

Standard Procedures 105

4.19 Parameter Objects

STklos parameters correspond to the ones defined in SRFI-39 (Parameters objects). See
SRFI document for more information.

(make-parameter init) STklos

procedure(make-parameter init converter)

Returns a new parameter object which is bound in the global dynamic environment to
a cell containing the value returned by the call (converter init). If the conversion
procedure converter is not specified the identity function is used instead.

The parameter object is a procedure which accepts zero or one argument. When
it is called with no argument, the content of the cell bound to this parameter object
in the current dynamic environment is returned. When it is called with one argument,
the content of the cell bound to this parameter object in the current dynamic envi-
ronment is set to the result of the call (converter arg), where arg is the argument
passed to the parameter object, and an unspecified value is returned.

(define radix
(make-parameter 10))

(define write-shared
(make-parameter

#f
(lambda (x)
(if (boolean? x)

x
(error ’write-shared "bad boolean ~S" x)))))

(radix) ⇒ 10
(radix 2)
(radix) ⇒ 2
(write-shared 0) ⇒ error

(define prompt
(make-parameter
123
(lambda (x)
(if (string? x)

x
(with-output-to-string (lambda () (write x)))))))

(prompt) ⇒ "123"
(prompt ">")
(prompt) ⇒ ">"

(parameterize ((expr1 expr2) ...) <body>) STklos

syntax

http://srfi.schemers.org/srfi-39/srfi-39.html

STklos Reference Manual

106 Standard Procedures

The expressions expr1 and expr2 are evaluated in an unspecified order. The value
of the expr1 expressions must be parameter objects. For each expr1 expression and
in an unspecified order, the local dynamic environment is extended with a binding
of the parameter object expr1 to a new cell whose content is the result of the call
(converter val), where val is the value of expr2 and converter is the conversion
procedure of the parameter object. The resulting dynamic environment is then used
for the evaluation of <body> (which refers to the R5RS grammar nonterminal of that
name). The result(s) of the parameterize form are the result(s) of the <body>.

(radix) ⇒ 2
(parameterize ((radix 16)) (radix)) ⇒ 16
(radix) ⇒ 2

(define (f n) (number->string n (radix)))

(f 10) ⇒ "1010"
(parameterize ((radix 8)) (f 10)) ⇒ "12"
(parameterize ((radix 8) (prompt (f 10))) (prompt)) ⇒ "1010"

(parameter? obj) STklos

procedure

Returns #t if obj is a parameter object, otherwise returns #f.

4.20 Misc

(gc) R5RS

procedure

Returns the address of the object obj as an integer.

(void) STklos

procedure(void arg1 ...)

Returns the special void object. If arguments are passed to void, they are evalued
and simply ignored.

(error str obj ...) STklos

procedure(error name str obj ...)

error is used to signal an error to the user. The second form of error takes a symbol
as first parameter; it is generally used for the name of the procedure which raises the
error.

Note: The specification string may follow the tilde conventions of format (see
format); in this case this procedure builds an error message according to the spec-
ification given in str. Otherwise, this procedure is conform to the error procedure
defined in SRFI-23 (Error reporting mechanism) and str is printed with the display
procedure, whereas the objs are printed with the write procedure.

http://srfi.schemers.org/srfi-23/srfi-23.html

STklos Reference Manual

Standard Procedures 107

Hereafter, are some calls of the error procedure using a formatted string

(error "bad integer ~A" "a")
a bad integer a

(error ’vector-ref "bad integer ~S" "a")
a vector-ref: bad integer "a"

(error ’foo "~A is not between ~A and ~A" "bar" 0 5)
a foo: bar is not between 0 and 5

and some conform to SRFI-23 (Error reporting mechanism)

(error "bad integer" "a")
a bad integer "a"

(error ’vector-ref "bad integer" "a")
a vector-ref: bad integer "a"

(error "bar" "is not between" 0 "and" 5)
a bar "is not between" 0 "and" 5

(require-extension <clause> ...) STklos

syntax

The syntax of require-extension is as follows:

(require-extension <clause> ...)

A clause has the form:

(srfi <extension-argument> ...)

where <extension-argument>s may be any Scheme-values.

If an <extension-argument> is a nonnegative integer, the functionality of the in-
dicated SRFIs is made available in the context in which the require-extension form
appears. For instance,

(require-extension (srfi 1 2))
; Make the SRFI 1 and 2 available

This form is compatible with SRFI-55 (Require-extension). However, STklos ac-
cepts also some symbolic names for requiring some extensions. For instance,

(require-extension (srfi lists and-let*))

is equivalent to the previous require-extension. A list of available symbols as
<extension-argument> is given in chapter ??.

http://srfi.schemers.org/srfi-55/srfi-55.html

STklos Reference Manual

108 Standard Procedures

(repl) STklos

procedure(repl :in inport :out outport :err errport)

This procedure launches a new Read-Eval-Print-Loop. Calls to repl can be embedded.
The ports used for input/output as well as the error port can be passed when repl
is called. If not passed, they default to current-input-port, current-output-port
and current-error-port.

(apropos obj) STklos

procedure(apropos obj module)

Apropos returns a list of symbols whose print name contains the characters of obj
as a substring . The given obj can be a string or symbol. This function returns the
list of matched symbols which can be accessed from the given module (defaults to the
current module if not provided).

(trace f-name ...) STklos

syntax

Invoking trace with one or more function names causes the functions named to be
traced. Henceforth, whenever such a function is invoked, information about the call
and the returned values, if any, will be printed on the current error port.

Calling trace with no argument returns the list of traced functions.

(untrace f-name ...) STklos

syntax

Invoking untrace with one or more function names causes the functions named not
to be traced anymore.

Calling untrace with no argument will untrace all the functions currently traced.

(pretty-print sexpr :key port width) STklos

procedure(pp sexpr :key port width)

This function tries to obtain a pretty-printed representation of sexpr. The pretty-
printed form is written on port with lines which are no more long than width charac-
ters. If port is omitted if defaults to the current error port. As a special convention,
if port is #t, output goes to the current output port and if port is #f, the output
is returned as a string by pretty-print. Note that pp is another name for pretty-
print.

(uri-parse str) STklos

procedure

Parses the string str as a RFC-2396 URI and return a keyed list with the following
components

• scheme : the scheme used as a string (defaults to "file")

• host : the host as a string (defaults to ””)

STklos Reference Manual

Standard Procedures 109

• port : the port as an integer (0 if no port specified)

• path : the path

• query : the qury part of the URI as a string (defaults to the empty string)

• fragment : the fragment of the URI as a string (defaults to the empty string)

(uri-parse "http://google.com")
⇒ (:scheme "http" :host "google.com" :port 80 :path "/"

:query "" :fragment "")
(uri-parse "http://stklos.net:8080/a/file?x=1;y=2#end")

⇒ (:scheme "http" :host "stklos.net" :port 8080
:path "/a/file" :query "x=1;y=2" :fragment "end")

(uri-parse "/a/file")
⇒ (:scheme "file" :host "" :port 0 :path "/a/file"

:query "" :fragment "")
(uri-parse "")

⇒ (:scheme "file" :host "" :port 0 :path ""
:query "" :fragment "")

(string->html str) STklos

procedure

This primitive is a convenience function; it returns a string where the HTML special
chars are properly translated. It can easily written in Scheme, but this version is fast.

(string->html "Just a <test>")
⇒ "Just a <test>"

STklos Reference Manual

110

Regular Expressions 111

5 Regular Expressions

STklos uses the Philip Hazel’s Perl-compatible Regular Expression (PCRE) library for
implementing regexps [13]. Consequently, the STklos regular expression syntax is the
same as PCRE, and Perl by the way.

The following text is extracted from the PCRE package. However, to make things shorter,
some of the original documentation as not been reported here. In particular some possibilities
of PCRE have been completely occulted (those whose description was too long and which
seems (at least to me), not too important). Read the documentation provided with PCRE
for a complete description6

A regular expression is a pattern that is matched against a subject string from left to right.
Most characters stand for themselves in a pattern, and match the corresponding characters
in the subject. As a trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expres-
sions comes from the ability to include alternatives and repetitions in the pattern. These are
encoded in the pattern by the use of meta-characters, which do not stand for themselves but
instead are interpreted in some special way.

There are two different sets of meta-characters: those that are recognized anywhere in the
pattern except within square brackets, and those that are recognized in square brackets.
Outside square brackets, the meta-characters are as follows:

The latest release of PCRE is available from http://www.pcre.org/6

http://www.pcre.org/

STklos Reference Manual

112 Regular Expressions

\ general escape character with several uses

^ assert start of subject (or line, in multiline mode)

$ assert end of subject (or line, in multiline mode)

. match any character except newline (by default)

[start character class definition

| start of alternative branch

(start subpattern

) end subpattern

? extends the meaning of (

also 0 or 1 quantifier

also quantifier minimizer

* 0 or more quantifier

+ 1 or more quantifier

{ start min/max quantifier

Part of a pattern that is in square brackets is called a ”character class”. In a character class
the only meta-characters are:

\ general escape character

^ negate the class, but only if the first character

- indicates character range

[POSIX character class (only if followed by POSIX syntax)

] terminates the character class

The following sections describe the use of each of the meta-characters.

5.1 Backslash

The backslash character has several uses. Firstly, if it is followed by a non-alphameric
character, it takes away any special meaning that character may have. This use of backslash
as an escape character applies both inside and outside character classes.

For example, if you want to match a * character, you write * in the pattern. This escaping
action applies whether or not the following character would otherwise be interpreted as a
meta-character, so it is always safe to precede a non-alphameric with backslash to specify
that it stands for itself. In particular, if you want to match a backslash, you write \\.

If you want to remove the special meaning from a sequence of characters, you can do so by
putting them between \Q and \E. This is different from Perl in that $ and @ are handled as
literals in \Q...\E sequences in PCRE, whereas in Perl, $ and @ cause variable interpolation.
Note the following examples:

Pattern PCRE matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the contents of $xyz

\Qabc\$xyz\E abc\$xyz abc\$xyz

\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

The \Q...\E sequence is recognized both inside and outside character classes.

STklos Reference Manual

Regular Expressions 113

A second use of backslash provides a way of encoding non-printing characters in patterns in
a visible manner. There is no restriction on the appearance of non-printing characters, apart
from the binary zero that terminates a pattern, but when a pattern is being prepared by
text editing, it is usually easier to use one of the following escape sequences than the binary
character it represents:

\a alarm, that is, the BEL character (hex 07)

\cx ”control-x”, where x is any character

\e escape (hex 1B)

\f formfeed (hex 0C)

\n newline (hex 0A)

\r carriage return (hex 0D)

\t tab (hex 09)

\ddd character with octal code ddd, or backreference

\xhh character with hex code hh

The precise effect of \cx is as follows: if x is a lower case letter, it is converted to upper case.
Then bit 6 of the character (hex 40) is inverted. Thus \cz becomes hex 1A, but \c{ becomes
hex 3B, while \c; becomes hex 7B.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a
character class, PCRE reads it and any following digits as a decimal number. If the number
is less than 10, or if there have been at least that many previous capturing left parentheses
in the expression, the entire sequence is taken as a back reference. A description of how this
works is given later, following the discussion of parenthesized subpatterns.

The third use of backslash is for specifying generic character types:

\d any decimal digit

\D any character that is not a decimal digit

\s any whitespace character

\S any character that is not a whitespace character

\w any ”word” character

\W any ”non-word” character

Each pair of escape sequences partitions the complete set of characters into two disjoint sets.
Any given character matches one, and only one, of each pair.

For compatibility with Perl, \s does not match the VT character (code 11). This makes it
different from the the POSIX ”space” class. The \s characters are HT (9), LF (10), FF (12),
CR (13), and space (32).

A ”word” character is any letter or digit or the underscore character, that is, any character
which can be part of a Perl ”word”. The definition of letters and digits is controlled by
PCRE’s character tables, and may vary if locale-specific matching is taking place. For
example, in the ”fr” (French) locale, some character codes greater than 128 are used for
accented letters, and these are matched by \w.

STklos Reference Manual

114 Regular Expressions

These character type sequences can appear both inside and outside character classes. They
each match one character of the appropriate type. If the current matching point is at the
end of the subject string, all of them fail, since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a condition
that has to be met at a particular point in a match, without consuming any characters from
the subject string. The use of subpatterns for more complicated assertions is described below.
The backslashed assertions are

\b matches at a word boundary

\B matches when not at a word boundary

\A matches at start of subject

\Z matches at end of subject or before newline at end

\z matches at end of subject

\G matches at first matching position in subject

These assertions may not appear in character classes (but note that \b has a different mean-
ing, namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the
previous character do not both match \w or \W (i.e. one matches \w and the other matches
\W), or the start or end of the string if the first or last character matches \w, respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described
below) in that they only ever match at the very start and end of the subject string, whatever
options are set. Thus, they are independent of multiline mode.

The backslash character has several uses. Firstly, if it is followed by a non-alphameric
character, it takes away any special meaning that character may have. This use of backslash
as an escape character applies both inside and outside character classes.

For example, if you want to match a ”*” character, you write ”*” in the pattern. This
applies whether or not the following character would otherwise be interpreted as a meta-
character, so it is always safe to precede a non-alphameric with ”\” to specify that it stands
for itself. In particular, if you want to match a backslash, you write ”\\”.

Another use of backslash is for specifying generic character types:

\d any decimal digit

\D any character that is not a decimal digit

\s any whitespace character

\S any character that is not a whitespace character

\w any ”word” character

\W any ”non-word” character

Each pair of escape sequences partitions the complete set of characters into two disjoint sets.
Any given character matches one, and only one, of each pair.

A ”word” character is any letter or digit or the underscore character, that is, any character
which can be part of a “word”.

STklos Reference Manual

Regular Expressions 115

These character type sequences can appear both inside and outside character classes. They
each match one character of the appropriate type. If the current matching point is at the
end of the subject string, all of them fail, since there is no character to match.

5.2 Circumflex and Dollar

Outside a character class, in the default matching mode, the circumflex character is an
assertion which is true only if the current matching point is at the start of the subject string.
Inside a character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are
involved, but it should be the first thing in each alternative in which it appears if the pattern
is ever to match that branch. If all possible alternatives start with a circumflex, that is, if the
pattern is constrained to match only at the start of the subject, it is said to be an ”anchored”
pattern. (There are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current matching point is at the
end of the subject string, or immediately before a newline character that is the last character
in the string (by default). Dollar need not be the last character of the pattern if a number
of alternatives are involved, but it should be the last item in any branch in which it appears.
Dollar has no special meaning in a character class.

The meanings of the circumflex and dollar characters are changed if the multiline option is
set. When this is the case, they match immediately after and immediately before an internal
newline character, respectively, in addition to matching at the start and end of the subject
string. For example, the pattern ^abc$ matches the subject string ”def\nabc” in multiline
mode, but not otherwise.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject
in both modes, and if all branches of a pattern start with \A it is always anchored, whether
multiline is set or not.

5.3 Full Stop (period, dot)

Outside a character class, a dot in the pattern matches any one character in the subject,
including a non-printing character, but not (by default) newline. If the dotall option is set,
dots match newlines as well. The handling of dot is entirely independent of the handling of
circumflex and dollar, the only relationship being that they both involve newline characters.
Dot has no special meaning in a character class.

5.4 Square Brackets

An opening square bracket introduces a character class, terminated by a closing square
bracket. A closing square bracket on its own is not special. If a closing square bracket is
required as a member of the class, it should be the first data character in the class (after an
initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject. A matched character must be
in the set of characters defined by the class, unless the first character in the class definition
is a circumflex, in which case the subject character must not be in the set defined by the

STklos Reference Manual

116 Regular Expressions

class. If a circumflex is actually required as a member of the class, ensure it is not the first
character, or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou]
matches any character that is not a lower case vowel. Note that a circumflex is just a
convenient notation for specifying the characters which are in the class by enumerating those
that are not. It is not an assertion: it still consumes a character from the subject string, and
fails if the current pointer is at the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and
lower case versions, so for example, a caseless [aeiou] matches ”A” as well as ”a”, and a
caseless [^aeiou] does not match ”A”, whereas a caseful version would.

The newline character is never treated in any special way in character classes, whatever the
setting of the dotall or multiline options is. A class such as [^a] will always match a
newline.

The minus (hyphen) character can be used to specify a range of characters in a character
class. For example, [d-m] matches any letter between d and m, inclusive. If a minus
character is required in a class, it must be escaped with a backslash or appear in a position
where it cannot be interpreted as indicating a range, typically as the first or last character
in the class.

It is not possible to have the literal character ”]” as the end character of a range. A pattern
such as [W-]46] is interpreted as a class of two characters (”W” and ”-”) followed by a
literal string ”46]”, so it would match ”W46]” or ”-46]”. However, if the ”]” is escaped
with a backslash it is interpreted as the end of range, so ‘(W-\]46) is interpreted as a single
class containing a range followed by two separate characters. The octal or hexadecimal
representation of ”]” can also be used to end a range.

Ranges operate in the collating sequence of character values. They can also be used for
characters specified numerically, for example [\000-\037].

If a range that includes letters is used when caseless matching is set, it matches the letters in
either case. For example, [W-c] is equivalent to [][\^_‘wxyzabc], matched caselessly, and
if character tables for the ”fr” locale are in use, [\xc8-\xcb] matches accented E characters
in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and
add the characters that they match to the class. For example, [\dABCDEF] matches any
hexadecimal digit. A circumflex can conveniently be used with the upper case character
types to specify a more restricted set of characters than the matching lower case type. For
example, the class [^\W_] matches any letter or digit, but not underscore.

All non-alphameric characters other than \, -, ^ (at the start) and the terminating] are
non-special in character classes, but it does no harm if they are escaped.

5.5 POSIX character classes

Perl supports the POSIX notation for character classes, which uses names enclosed by [:
and :] within the enclosing square brackets. STklos , thanks to PCRE, also supports this
notation. For example,

STklos Reference Manual

Regular Expressions 117

[01[:alpha:]%]

matches ”0”, ”1”, any alphabetic character, or ”%”. The supported class names are

alnum letters and digits

alpha letters

ascii character codes 0 - 127

blank space or tab only

cntrl control characters

digit decimal digits (same as \d)

graph printing characters, excluding space

lower lower case letters

print printing characters, including space

punct printing characters, excluding letters and digits

space white space (not quite the same as \s)
upper upper case letters

word ”word” characters (same as \w)

xdigit hexadecimal digits

The ”space” characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32).
Notice that this list includes the VT character (code 11). This makes ”space” different to
\s, which does not include VT (for Perl compatibility).

The name ”word” is a Perl extension, and ”blank” is a GNU extension from Perl 5.8. Another
Perl extension is negation, which is indicated by a ^ character after the colon. For example,

[12[:^digit:]]

matches ”1”, ”2”, or any non-digit. STklos (and Perl) also recognize the POSIX syntax
[.ch.] and [=ch=] where ”ch” is a ”collating element”, but these are not supported, and
an error is given if they are encountered.

5.6 Vertical Bar

Vertical bar characters are used to separate alternative patterns. For example, the pattern

gilbert|sullivan

matches either ”gilbert” or ”sullivan”. Any number of alternatives may appear, and an
empty alternative is permitted (matching the empty string). The matching process tries
each alternative in turn, from left to right, and the first one that succeeds is used. If the
alternatives are within a subpattern (defined below), ”succeeds” means matching the rest of
the main pattern as well as the alternative in the subpattern.

STklos Reference Manual

118 Regular Expressions

5.7 Internal Option Setting

The settings of the caseless, multiline, dotall, and EXTENDED options can be
changed from within the pattern by a sequence of Perl option letters enclosed between ”(?”
and ”)”. The option letters are

i for caseless

m for multiline

s for dotall

x for extended

For example, (?im) sets caseless, multiline matching. It is also possible to unset these options
by preceding the letter with a hyphen, and a combined setting and unsetting such as (?im-
sx), which sets caseless and multiline while unsetting dotall and extended, is also
permitted. If a letter appears both before and after the hyphen, the option is unset.

When an option change occurs at top level (that is, not inside subpattern parentheses), the
change applies to the remainder of the pattern that follows. If the change is placed right at
the start of a pattern, PCRE extracts it into the global options

An option change within a subpattern affects only that part of the current pattern that
follows it, so

(a(?i)b)c

matches abc and aBc and no other strings (assuming caseless is not used).By this means,
options can be made to have different settings in different parts of the pattern. Any changes
made in one alternative do carry on into subsequent branches within the same subpattern.
For example,

(a(?i)b|c)

matches ”ab”, ”aB”, ”c”, and ”C”, even though when matching ”C” the first branch is
abandoned before the option setting. This is because the effects of option settings happen
at compile time. There would be some very weird behaviour otherwise.

The PCRE-specific options ungreedy and extra can be changed in the same way as the
Perl-compatible options by using the characters U and X respectively. The (?X) flag setting
is special in that it must always occur earlier in the pattern than any of the additional
features it turns on, even when it is at top level. It is best put at the start.

5.8 Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking
part of a pattern as a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

cat(aract|erpillar|)

STklos Reference Manual

Regular Expressions 119

matches one of the words ”cat”, ”cataract”, or ”caterpillar”. Without the parentheses,
it would match ”cataract”, ”erpillar” or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above). When the
whole pattern matches, that portion of the subject string that matched the subpattern
is set so that it can be used in the regexp-replace or regexp-replace-all functions.
Opening parentheses are counted from left to right (starting from 1) to obtain the
numbers of the capturing subpatterns.

For example, if the string ”the red king” is matched against the pattern

the ((red|white) (king|queen))

the captured substrings are ”red king”, ”red”, and ”king”, and are numbered 1, 2, and 3,
respectively.

The fact that plain parentheses fulfil two functions is not always helpful. There are often
times when a grouping subpattern is required without a capturing requirement. If an opening
parenthesis is followed by a question mark and a colon, the subpattern does not do any
capturing, and is not counted when computing the number of any subsequent capturing
subpatterns. For example, if the string ”the white queen” is matched against the pattern

the ((?:red|white) (king|queen))

the captured substrings are ”white queen” and ”queen”, and are numbered 1 and 2. The
maximum number of capturing subpatterns is 65535, and the maximum depth of nesting of
all subpatterns, both capturing and non-capturing, is 200.

As a convenient shorthand, if any option settings are required at the start of a non-capturing
subpattern, the option letters may appear between the ”?” and the ”:”. Thus the two patterns

(?i:saturday|sunday)

and

(?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left to
right, and options are not reset until the end of the subpattern is reached, an option setting
in one branch does affect subsequent branches, so the above patterns match ”SUNDAY” as
well as ”Saturday”.

5.9 Named Subpatterns

Identifying capturing parentheses by number is simple, but it can be very hard to keep
track of the numbers in complicated regular expressions. Furthermore, if an expression is
modified, the numbers may change. To help with the difficulty, PCRE supports the naming
of subpatterns, something that Perl does not provide. The Python syntax (?P<name>...) is
used. Names consist of alphanumeric characters and underscores, and must be unique within
a pattern.

STklos Reference Manual

120 Regular Expressions

5.10 Repetition

Repetition is specified by quantifiers, which can follow any of the following items:

• a literal data character

• the . metacharacter

• the \C escape sequence

• escapes such as \d that match single characters

• a character class

• a back reference (see next section)

• a parenthesized subpattern (unless it is an assertion)

The general repetition quantifier specifies a minimum and maximum number of permitted
matches, by giving the two numbers in curly brackets (braces), separated by a comma. The
numbers must be less than 65536, and the first must be less than or equal to the second. For
example:

z{2,4}

matches ”zz”, ”zzz”, or ”zzzz”. A closing brace on its own is not a special character. If
the second number is omitted, but the comma is present, there is no upper limit; if the
second number and the comma are both omitted, the quantifier specifies an exact number of
required matches. Thus

[aeiou]{3,}

matches at least 3 successive vowels, but may match many more, while

\d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a
quantifier is not allowed, or one that does not match the syntax of a quantifier, is taken as a
literal character. For example, {,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item and
the quantifier were not present.

For convenience (and historical compatibility) the three most common quantifiers have single-
character abbreviations:

• * is equivalent to {0,}

• + is equivalent to {1,}

• ? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no char-
acters with a quantifier that has no upper limit, for example:

STklos Reference Manual

Regular Expressions 121

(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns.
However, because there are cases where this can be useful, such patterns are now accepted,
but if any repetition of the subpattern does in fact match no characters, the loop is forcibly
broken.

By default, the quantifiers are ”greedy”, that is, they match as much as possible (up to the
maximum number of permitted times), without causing the rest of the pattern to fail. The
classic example of where this gives problems is in trying to match comments in C programs.
These appear between the sequences /* and */ and within the sequence, individual * and /
characters may appear. An attempt to match C comments by applying the pattern

/*.**/

to the string

/* first command */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead
matches the minimum number of times possible, so the pattern

/*.*?*/

does the right thing with the C comments. The meaning of the various quantifiers is not
otherwise changed, just the preferred number of matches. Do not confuse this use of question
mark with its use as a quantifier in its own right. Because it has two uses, it can sometimes
appear doubled, as in

\d??\d

which matches one digit by preference, but can match two if that is the only way the rest of
the pattern matches.

If the ungreedy option is set (an option which is not available in Perl), the quantifiers are
not greedy by default, but individual ones can be made greedy by following them with a
question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater
than 1 or with a limited maximum, more store is required for the compiled pattern, in
proportion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the dotall option (equivalent to Perl’s /s) is set,
thus allowing the . to match newlines, the pattern is implicitly anchored, because whatever
follows will be tried against every character position in the subject string, so there is no point
in retrying the overall match at any position after the first. PCRE normally treats such a
pattern as though it were preceded by \A.

STklos Reference Manual

122 Regular Expressions

In cases where it is known that the subject string contains no newlines, it is worth setting
dotall in order to obtain this optimization, or alternatively using ^ to indicate anchoring
explicitly.

However, there is one situation where the optimization cannot be used. When .* is inside
capturing parentheses that are the subject of a backreference elsewhere in the pattern, a
match at the start may fail, and a later one succeed. Consider, for example:

(.*)abc\1

If the subject is ”xyz123abc123” the match point is the fourth character. For this reason,
such a pattern is not implicitly anchored.

When a capturing subpattern is repeated, the value captured is the substring that matched
the final iteration. For example, after

(tweedle[dume]{3}\s*)+

has matched ”tweedledum tweedledee” the value of the captured substring is ”tweedledee”.
However, if there are nested capturing subpatterns, the corresponding captured values may
have been set in previous iterations. For example, after

(a|(b))+

matches ”aba” the value of the second captured substring is ”b”.

5.11 Atomic Grouping And Possessive Quantifiers

With both maximizing and minimizing repetition, failure of what follows normally causes
the repeated item to be re-evaluated to see if a different number of repeats allows the rest of
the pattern to match. Sometimes it is useful to prevent this, either to change the nature of
the match, or to cause it fail earlier than it otherwise might, when the author of the pattern
knows there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line

123456bar

After matching all 6 digits and then failing to match ”foo”, the normal action of the matcher
is to try again with only 5 digits matching the \d+ item, and then with 4, and so on, before
ultimately failing. ”Atomic grouping” (a term taken from Jeffrey Friedl’s book) provides the
means for specifying that once a subpattern has matched, it is not to be re-evaluated in this
way.

If we use atomic grouping for the previous example, the matcher would give up immediately
on failing to match ”foo” the first time. The notation is a kind of special parenthesis, starting
with (?> as in this example:)

(?>\d+)foo

STklos Reference Manual

Regular Expressions 123

This kind of parenthesis ”locks up” the part of the pattern it contains once it has matched,
and a failure further into the pattern is prevented from backtracking into it. Backtracking
past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters
that an identical standalone pattern would match, if anchored at the current point in the
subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above
example can be thought of as a maximizing repeat that must swallow everything it can. So,
while both \d+ and \d+? are prepared to adjust the number of digits they match in order
to make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits.

Atomic groups in general can of course contain arbitrarily complicated subpatterns, and can
be nested. However, when the subpattern for an atomic group is just a single repeated item,
as in the example above, a simpler notation, called a ”possessive quantifier” can be used.
This consists of an additional + character following a quantifier. Using this notation, the
previous example can be rewritten as

\d++bar

Possessive quantifiers are always greedy; the setting of the ungreedy option is ignored.
They are a convenient notation for the simpler forms of atomic group. However, there is no
difference in the meaning or processing of a possessive quantifier and the equivalent atomic
group.

The possessive quantifier syntax is an extension to the Perl syntax. It originates in Sun’s
Java package.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated
an unlimited number of times, the use of an atomic group is the only way to avoid some
failing matches taking a very long time indeed. The pattern

(\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed
in <>, followed by either ! or ?. When it matches, it runs quickly. However, if it is applied to

aa

it takes a long time before reporting failure. This is because the string can be divided between
the two repeats in a large number of ways, and all have to be tried. (The example used [!?]
rather than a single character at the end, because both PCRE and Perl have an optimization
that allows for fast failure when a single character is used. They remember the last single
character that is required for a match, and fail early if it is not present in the string.) If the
pattern is changed to

((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

STklos Reference Manual

124 Regular Expressions

5.12 Back References

Outside a character class, a backslash followed by a digit greater than 0 (and possibly further
digits) is a back reference to a capturing subpattern earlier (that is, to its left) in the pattern,
provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always taken as a
back reference, and causes an error only if there are not that many capturing left parentheses
in the entire pattern. In other words, the parentheses that are referenced need not be to the
left of the reference for numbers less than 10. See the section entitled ”Backslash” above for
further details of the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current
subject string, rather than anything matching the subpattern itself (see ?? below for a way
of doing that). So the pattern

(sens|respons)e and \1ibility

matches ”sense and sensibility” and ”response and responsibility”, but not ”sense and re-
sponsibility”. If caseful matching is in force at the time of the back reference, the case of
letters is relevant. For example,

((?i)rah)\s+\1

matches ”rah rah” and ”RAH RAH”, but not ”RAH rah”, even though the original capturing
subpattern is matched caselessly.

Back references to named subpatterns use the Python syntax (?P=name). We could rewrite
the above example as follows:

(?<p1>(?i)rah)\s+(?P=p1)

There may be more than one back reference to the same subpattern. If a subpattern has not
actually been used in a particular match, any back references to it always fail. For example,
the pattern

(a|(bc))\2

always fails if it starts to match ”a” rather than ”bc”. Because there may be many capturing
parentheses in a pattern, all digits following the backslash are taken as part of a potential back
reference number. If the pattern continues with a digit character, some delimiter must be
used to terminate the back reference. If the extended option is set, this can be whitespace.
Otherwise an empty comment can be used.

A back reference that occurs inside the parentheses to which it refers fails when the subpattern
is first used, so, for example, (a\1) never matches. However, such references can be useful
inside repeated subpatterns. For example, the pattern

(a|b\1)+

STklos Reference Manual

Regular Expressions 125

matches any number of ”a”s and also ”aba”, ”ababbaa” etc. At each iteration of the subpat-
tern, the back reference matches the character string corresponding to the previous iteration.
In order for this to work, the pattern must be such that the first iteration does not need to
match the back reference. This can be done using alternation, as in the example above, or
by a quantifier with a minimum of zero.

5.13 Assertions

An assertion is a test on the characters following or preceding the current matching point that
does not actually consume any characters. The simple assertions coded as \b, \B, \A, \G,
\Z, \z, ^ and $ are described above. More complicated assertions are coded as subpatterns.
There are two kinds: those that look ahead of the current position in the subject string, and
those that look behind it.

An assertion subpattern is matched in the normal way, except that it does not cause the
current matching position to be changed. Lookahead assertions start with (?= for positive
assertions and (?! for negative assertions. For example,

\w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match,
and

foo(?!bar)

matches any occurrence of ”foo” that is not followed by ”bar”. Note that the apparently
similar pattern

(?!foo)bar

does not find an occurrence of ”bar” that is preceded by something other than ”foo”; it finds
any occurrence of ”bar” whatsoever, because the assertion (?!foo) is always true when the
next three characters are ”bar”. A lookbehind assertion is needed to achieve this effect.

If you want to force a matching failure at some point in a pattern, the most convenient way
to do it is with (?!) because an empty string always matches, so an assertion that requires
there not to be an empty string must always fail.

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions.
For example,

(?<!foo)bar

does find an occurrence of ”bar” that is not preceded by ”foo”. The contents of a lookbehind
assertion are restricted such that all the strings it matches must have a fixed length. However,
if there are several alternatives, they do not all have to have the same fixed length. Thus

(?<=bullock|donkey)

is permitted, but

STklos Reference Manual

126 Regular Expressions

(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted
only at the top level of a lookbehind assertion. This is an extension compared with Perl (at
least for 5.8), which requires all branches to match the same length of string. An assertion
such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it
is acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move
the current position back by the fixed width and then try to match. If there are insufficient
characters before the current position, the match is deemed to fail.

Atomic groups can be used in conjunction with lookbehind assertions to specify efficient
matching at the end of the subject string. Consider a simple pattern such as

abcd$

when applied to a long string that does not match. Because matching proceeds from left to
right, PCRE will look for each ”a” in the subject and then see if what follows matches the
rest of the pattern. If the pattern is specified as

^.*abcd$

the initial .* matches the entire string at first, but when this fails (because there is no
following ”a”), it backtracks to match all but the last character, then all but the last two
characters, and so on. Once again the search for ”a” covers the entire string, from right to
left, so we are no better off. However, if the pattern is written as

^(?>.*)(?<=abcd)

or, equivalently,

^.*+(?<=abcd)

there can be no backtracking for the .* item; it can match only the entire string. The
subsequent lookbehind assertion does a single test on the last four characters. If it fails, the
match fails immediately. For long strings, this approach makes a significant difference to the
processing time.

Several assertions (of any sort) may occur in succession. For example,

(?<=\d{3})(?<!999)foo

STklos Reference Manual

Regular Expressions 127

matches ”foo” preceded by three digits that are not ”999”. Notice that each of the assertions
is applied independently at the same point in the subject string. First there is a check that
the previous three characters are all digits, and then there is a check that the same three
characters are not ”999”. This pattern does fInotfR match ”foo” preceded by six characters,
the first of which are digits and the last three of which are not ”999”. For example, it doesn’t
match ”123abcfoo”. A pattern to do that is

(?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first
three are digits, and then the second assertion checks that the preceding three characters are
not ”999”.

Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of ”baz” that is preceded by ”bar” which in turn is not preceded by
”foo”, while

(?<=\d{3}(?!999)...)foo

is another pattern which matches ”foo” preceded by three digits and any three characters
that are not ”999”.

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it
makes no sense to assert the same thing several times. If any kind of assertion contains
capturing subpatterns within it, these are counted for the purposes of numbering the cap-
turing subpatterns in the whole pattern. However, substring capturing is carried out only
for positive assertions, because it does not make sense for negative assertions.

5.14 Conditional Subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose
between two alternative subpatterns, depending on the result of an assertion, or whether
a previous capturing subpattern matched or not. The two possible forms of conditional
subpattern are

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is
used. If there are more than two alternatives in the subpattern, a compile-time error occurs.

There are three kinds of condition. If the text between the parentheses consists of a sequence
of digits, the condition is satisfied if the capturing subpattern of that number has previously
matched. The number must be greater than zero. Consider the following pattern, which
contains non-significant white space to make it more readable (assume the extended option)
and to divide it into three parts for ease of discussion:

STklos Reference Manual

128 Regular Expressions

(\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is present,
sets it as the first captured substring. The second part matches one or more characters
that are not parentheses. The third part is a conditional subpattern that tests whether
the first set of parentheses matched or not. If they did, that is, if subject started with an
opening parenthesis, the condition is true, and so the yes-pattern is executed and a closing
parenthesis is required. Otherwise, since no-pattern is not present, the subpattern matches
nothing. In other words, this pattern matches a sequence of non-parentheses, optionally
enclosed in parentheses.

If the condition is the string (R), it is satisfied if a recursive call to the pattern or subpattern
has been made. At ”top level”, the condition is false. This is a PCRE extension. See PCRE
documentation for recursive patterns.

If the condition is not a sequence of digits or (R), it must be an assertion. This may
be a positive or negative lookahead or lookbehind assertion. Consider this pattern, again
containing non-significant white space, and with the two alternatives on the second line:

(?(?=‘(^a-z)*‘(a-z))
\d{2}-‘(a-z){3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence of non-
letters followed by a letter. In other words, it tests for the presence of at least one letter
in the subject. If a letter is found, the subject is matched against the first alternative;
otherwise it is matched against the second. This pattern matches strings in one of the two
forms dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.

5.15 Comments

The sequence (?# marks the start of a comment which continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment
play no part in the pattern matching at all.

If the extended option is set, an unescaped # character outside a character class introduces
a comment that continues up to the next newline character in the pattern.

5.16 Subpatterns As Subroutines

If the syntax for a recursive subpattern reference (either by number or by name) is used
outside the parentheses to which it refers, it operates like a subroutine in a programming
language. An earlier example pointed out that the pattern

(sens|respons)e and \1ibility

matches ”sense and sensibility” and ”response and responsibility”, but not ”sense and re-
sponsibility”. If instead the pattern

STklos Reference Manual

Regular Expressions 129

(sens|respons)e and (?1)ibility

is used, it does match ”sense and responsibility” as well as the other two strings. Such
references must, however, follow the subpattern to which they refer.

5.17 Regexp Procedures

This section lists the Scheme functions that can use PCRE regexpr described before

(string->regexp string) STklos

procedure

String->regexp takes a string representation of a regular expression and compiles it
into a regexp value. Other regular expression procedures accept either a string or a
regexp value as the matching pattern. If a regular expression string is used multiple
times, it is faster to compile the string once to a regexp value and use it for repeated
matches instead of using the string each time.

(regexp? obj) STklos

procedure

Regexp returns #t if obj is a regexp value created by the regexp, otherwise regexp
returns #f.

(regexp-match pattern str) STklos

procedure(regexp-match-positions pattern str)

These functions attempt to match pattern (a string or a regexp value) to str. If
the match fails, #f is returned. If the match succeeds, a list (containing strings
for regexp-match and positions for regexp-match-positions is returned. The first
string (or positions) in this list is the portion of string that matched pattern. If two
portions of string can match pattern, then the earliest and longest match is found, by
default.

Additional strings or positions are returned in the list if pattern contains parenthesized
sub-expressions; matches for the sub-expressions are provided in the order of the
opening parentheses in pattern.

(regexp-match-positions "ca" "abracadabra")
⇒ ((4 6))

(regexp-match-positions "CA" "abracadabra")
⇒ #f

(regexp-match-positions "(?i)CA" "abracadabra")
⇒ ((4 6))

(regexp-match "(a*)(b*)(c*)" "abc")
⇒ ("abc" "a" "b" "c")

(regexp-match-positions "(a*)(b*)(c*)" "abc")
⇒ ((0 3) (0 1) (1 2) (2 3))

(regexp-match-positions "(a*)(b*)(c*)" "c")
⇒ ((0 1) (0 0) (0 0) (0 1))

(regexp-match-positions "(?<=\\d{3})(?<!999)foo"
"999foo and 123foo")

⇒ ((14 17))

STklos Reference Manual

130 Regular Expressions

(regexp-replace pattern string substitution) STklos

procedure(regexp-replace-all pattern string substitution)

Regexp-replace matches the regular expression pattern against string. If there is
a match, the portion of string which matches pattern is replaced by the substitu-
tion string. If there is no match, regexp-replace returns string unmodified. Note
that the given pattern could be here either a string or a regular expression.

If pattern contains \n where n is a digit between 1 and 9, then it is replaced in the
substitution with the portion of string that matched the n-th parenthesized subex-
pression of pattern. If n is equal to 0, then it is replaced in substitution with the
portion of string that matched pattern.

Regexp-replace replaces the first occurrence of pattern in string. To replace all
the occurrences of pattern, use regexp-replace-all.

(regexp-replace "a*b" "aaabbcccc" "X")
⇒ "Xbcccc"

(regexp-replace (string->regexp "a*b") "aaabbcccc" "X")
⇒ "Xbcccc"

(regexp-replace "(a*)b" "aaabbcccc" "X\1Y")
⇒ "XaaaYbcccc"

(regexp-replace "f(.*)r" "foobar" "\1 \1")
⇒ "ooba ooba"

(regexp-replace "f(.*)r" "foobar" "\0 \0")
⇒ "foobar foobar"

(regexp-replace "a*b" "aaabbcccc" "X")
⇒ "Xbcccc"

(regexp-replace-all "a*b" "aaabbcccc" "X")
⇒ "XXcccc"

(regexp-quote str) STklos

procedure

Takes an arbitrary string and returns a string where characters of str that could serve
as regexp metacharacters are escaped with a backslash, so that they safely match only
themselves.

(regexp-quote "cons") ⇒ "cons"
(regexp-quote "list?") ⇒ "list\\?"

regexp-quote is useful when building a composite regexp from a mix of regexp strings
and verbatim strings.

Pattern Matching 131

6 Pattern Matching

Pattern matching is a key feature of most modern functional programming languages since
it allows clean and secure code to be written. Internally, “pattern-matching forms” should
be translated (compiled) into cascades of “elementary tests” where code is made as efficient
as possible, avoiding redundant tests; STklos “pattern matching compiler” provides this7.

The technique used is described in details in [4], and the code generated can be considered
optimal

The “pattern language” allows the expression of a wide variety of patterns, including:

• Non-linear patterns: pattern variables can appear more than once, allowing comparison
of subparts of the datum (through eq-)

• Recursive patterns on lists: for example, checking that the datum is a list of zero or
more as followed by zero or more bs.

• Pattern matching on lists as well as on vectors.

6.1 STklos Pattern Matching Facilities

Only two special forms are provided for this in STklos: match-case and match-lambda.

(match-case <key> <clause> ...) STklos

syntax

The argument key may be any expression and each clause has the form

(<pattern> <expression> ...)

A match-case expression is evaluated as follows: <key> is evaluated and the result
is compared with each successive pattern. If the <pattern> in some clause yields a
match, then the <expression>s in that clause are evaluated from left to right in an
environment where the pattern variables are bound to the corresponding subparts of
<key>, and the result of the last expression in that clause is returned as the result of
the match-case expression. If no pattern in any clause matches the <key>, then, if
there is an else clause, its expressions are evaluated and the result of the last is the
result of the whole match-case expression; otherwise the result of the match-case
expression is unspecified.

The “pattern matching compiler” has been written by Jean-Marie Geffroy and is part of the Manuel Serrano’s7

Bigloo compiler [1] since several years. The code (and documentation) included in STklos has been stolen

from the Bigloo package v2.4 (the only difference between both package is the pattern matching of structures

which is absent in STklos).

STklos Reference Manual

132 Pattern Matching

The equality predicate used for tests is eq?.

(match-case ’(a b a)
((?x ?x) ’foo)
((?x ?- ?x) ’bar)) ⇒ bar

(match-case ’(a (b c) d)
((?x ?y) (list ’length=2 y x))
((?x ?y ?z) (list ’length=3 z y x)))

⇒ (length=3 d (b c) a)

(match-lambda <clause> ...) STklos

syntax

match-lambda expands into a lambda-expression expecting an argument which, once
applied to an expression, behaves exactly like a match-case expression.

((match-lambda
((?x ?x) ’foo)
((?x ?- ?x) ’bar))
’(a b a)) ⇒ bar

6.2 The Pattern Language

The syntax for <pattern> is:

<pattern> ==> Matches:

<atom> the <atom>.
| (kwote <atom>) any expression eq? to <atom>.
| (and <pat1> ... <patn>) if all of <pati> match.

| (or <pat1><patn>) if any of <pat1> through <patn> matches.

| (not <pat>) if <pat> doesn’t match.

| (? <predicate>) if <predicate> is true.

| (<pat1> ... <patn>) a list of n elements. Here, ... is a

meta-character denoting a finite repetition

of patterns.

| <pat> ... a (possibly empty) repetition

of <pat> in a list.

| #(<pat> ... <patn>) a vector of n elements.

| ?<id> anything, and binds id as a variable.

| ?- anything.

| ??- any (possibly empty) repetition of anything

in a list.

| ???- any end of list.

Remark: and, or, not and kwote must be quoted in order to be treated as literals. This is
the only justification for having the kwote pattern since, by convention, any atom which is
not a keyword is quoted.

STklos Reference Manual

Pattern Matching 133

Explanations Through Examples

• ?- matches any s-expr.

• a matches the atom ’a.

• ?a matches any expression, and binds the variable a to this expression.

• (? integer?) matches any integer.

• (a (a b)) matches the only list ’(a (a b)).

• ???- can only appear at the end of a list, and always succeeds. For instance, (a ???-)
is equivalent to (a . ?-).

• when occurring in a list, ??- matches any sequence of anything: (a ??- b) matches
any list whose car is a and last car is b.

• (a ...) matches any list of a’s, possibly empty.

• (?x ?x) matches any list of length 2 whose car is eq to its cadr.

• ((and (not a) ?x) ?x) matches any list of length 2 whose car is not eq to ’a but is
eq to its cadr.

• #(?- ?- ???-) matches any vector whose length is at least 2.

Remark: ??- and ... patterns can not appear inside a vector, where you should use ???-:
For example, #(a ??- b) or #(a...) are invalid patterns, whereas #(a ???-) is valid and
matches any vector whose first element is the atom a.

STklos Reference Manual

134

Exceptions and Conditions 135

7 Exceptions and Conditions

7.1 Exceptions

The following text is extracted from SRFI-34 (Exception Handling for Programs), from
which STklos exceptions are derived.

Exception handlers are one-argument procedures that determine the action the program
takes when an exceptional situation is signalled. The system implicitly maintains a current
exception handler.

The program raises an exception by invoking the current exception handler, passing to it
an object encapsulating information about the exception. Any procedure accepting one
argument may serve as an exception handler and any object may be used to represent an
exception.

The system maintains the current exception handler as part of the dynamic environment of
the program, akin to the current input or output port, or the context for dynamic-wind. The
dynamic environment can be thought of as that part of a continuation that does not specify
the destination of any returned values. It includes the current input and output ports, the
dynamic-wind context, and this SRFI’s current exception handler.

(with-handler <handler> <expr1> ... <exprn>) STklos

syntax

Evaluates the sequences of expressions <expr1> to <exprn>. <handler> must be a
procedure that accepts one argument. It is installed as the current exception handler
for the dynamic extent (as determined by dynamic-wind) of the evaluations of the
expressions

(with-handler (lambda (c)
(display "Catch an error\n"))

(display "One ... ")
(+ "will yield" "an error")
(display "... Two"))

a "One ... Catch an error"

(with-exception-handler <handler> <thunk>) STklos

syntax

This form is similar to with-handler. It uses a thunk instead of a sequence of
expressions. It is conform to SRFI-34 (Exception Handling for Programs). In fact,

(with-handler <handler> <expr1> ... <exprn>)

http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-34/srfi-34.html

STklos Reference Manual

136 Exceptions and Conditions

is equivalent to

(with-exception-handler <handler>
(lambda () <expr1> ... <exprn>))

(raise obj) STklos

procedure

Invokes the current exception handler on obj. The handler is called in the dynamic
environment of the call to raise, except that the current exception handler is that in
place for the call to with-handler that installed the handler being called.

(with-handler (lambda (c)
(format "value ~A was raised" c))

(raise ’foo)
(format #t "never printed\n"))

⇒ "value foo was raised"

(guard (<var> <clause1 > <clause2 > ...) <body>) STklos

syntax

Evaluating a guard form evaluates <body> with an exception handler that binds the
raised object to <var> and within the scope of that binding evaluates the clauses
as if they were the clauses of a cond expression. That implicit cond expression is
evaluated with the continuation and dynamic environment of the guard expression.
If every <clause>’s test evaluates to false and there is no else clause, then raise is
re-invoked on the raised object within the dynamic environment of the original call
to raise except that the current exception handler is that of the guard expression.

(guard (condition
((assq ’a condition) => cdr)
((assq ’b condition)))

(raise (list (cons ’a 42))))
⇒ 42

(guard (condition
((assq ’a condition) => cdr)
((assq ’b condition)))

(raise (list (cons ’b 23))))
⇒ (b . 23)

(with-handler (lambda (c) (format "value ~A was raised" c))
(guard (condition
((assq ’a condition) => cdr)
((assq ’b condition)))
(raise (list (cons ’x 0)))))

⇒ "value ((x . 0)) was raised"

STklos Reference Manual

Exceptions and Conditions 137

7.2 Conditions

The following text is extracted from SRFI-35 (Conditions), from which STklos conditions
are derived.

Conditions are values that communicate information about exceptional situations between
parts of a program. Code that detects an exception may be in a different part of the program
than the code that handles it. In fact, the former may have been written independently from
the latter. Consequently, to facilitate effective handling of exceptions, conditions must com-
municate as much information as possible as accurately as possible, and still allow effective
handling by code that did not precisely anticipate the nature of the exception that occurred.

Conditions available in STklos are derived from SRFI-35 (Conditions) and in this SRFI
two mechanisms to enable this kind of communication are provided:

• subtyping among condition types allows handling code to determine the general nature
of an exception even though it does not anticipate its exact nature,

• compound conditions allow an exceptional situation to be described in multiple ways.

Conditions are structures with named slots. Each condition belongs to one condition type (a
condition type can be made from several condition types). Each condition type specifies a
set of slot names. A condition belonging to a condition type includes a value for each of the
type’s slot names. These values can be extracted from the condition by using the appropriate
slot name.

There is a tree of condition types with the distinguished &condition as its root. All other
condition types have a parent condition type.

Conditions are implemented with STklos structures (with a special bit indicating that
there are conditions). Of course, condition types are implemented with structure types. As
a consequence, functions on structures or structures types are available on conditions or
conditions types (the contrary is not true). For instance, if C is a condition, the expression

(struct->list C)

is a simple way to see it’s slots and their associated value.

(make-condition-type id parent slot-names) STklos

procedure

Make-condition-type returns a new condition type. Id must be a symbol that
serves as a symbolic name for the condition type. Parent must itself be a condition
type. Slot-names must be a list of symbols. It identifies the slots of the conditions
associated with the condition type.

(condition-type? obj) STklos

procedure

Returns #t if obj is a condition type, and #f otherwise

(make-compound-condition-type id ct1 ...) STklos

procedure

http://srfi.schemers.org/srfi-35/srfi-35.html

STklos Reference Manual

138 Exceptions and Conditions

Make-compound-condition-type returns a new condition type, built from the con-
dition types ct1, ... Id must be a symbol that serves as a symbolic name for the
condition type. The slots names of the new condition type is the union of the slots of
conditions ct1 ...

Note: This function is not defined in SRFI-34 (Exception Handling for Programs).

(make-condition type slot-name value ...) STklos

procedure

Make-condition creates a condition value belonging condition type type. The fol-
lowing arguments must be, in turn, a slot name and an arbitrary value. There must
be such a pair for each slot of type and its direct and indirect supertypes. Make-
condition returns the condition value, with the argument values associated with
their respective slots.

(let* ((ct (make-condition-type ’ct1 &condition ’(a b)))
(c (make-condition ct ’b 2 ’a 1)))

(struct->list c))
⇒ ((a . 1) (b . 2))

(condition? obj) STklos

procedure

Returns #t if obj is a condition, and #f otherwise

(condition-has-type? condition condition-type) STklos

procedure

Condition-has-type? tests if condition belongs to condition-type. It returns #t
if any of condition ’s types includes condition-type either directly or as an ancestor
and #f otherwise.

(let* ((ct1 (make-condition-type ’ct1 &condition ’(a b)))
(ct2 (make-condition-type ’ct2 ct1 ’(c)))
(ct3 (make-condition-type ’ct3 &condition ’(x y z)))
(c (make-condition ct2 ’a 1 ’b 2 ’c 3)))

(list (condition-has-type? c ct1)
(condition-has-type? c ct2)
(condition-has-type? c ct3)))

⇒ (#t #t #f)

(condition-ref condition slot-name) STklos

procedure

Condition must be a condition, and slot-name a symbol. Moreover, condition
must belong to a condition type which has a slot name called slot-name, or one of its
(direct or indirect) supertypes must have the slot. Condition-ref returns the value
associated with slot-name.

STklos Reference Manual

Exceptions and Conditions 139

(let* ((ct (make-condition-type ’ct1 &condition ’(a b)))
(c (make-condition ct ’b 2 ’a 1)))

(condition-ref c ’b))
⇒ 2

(make-compound-condition condition0 condition1 ...) STklos

procedure

Make-compound-condition returns a compound condition belonging to all condition
types that the conditioni belong to.

Condition-ref, when applied to a compound condition will return the value from
the first of the conditioni that has such a slot.

(extract-condition condition condition-type) STklos

procedure

Condition must be a condition belonging to condition-type. Extract-condition
returns a condition of condition-type with the slot values specified by condition.
The new condition is always allocated.

(let* ((ct1 (make-condition-type ’ct1 &condition ’(a b)))
(ct2 (make-condition-type ’ct2 ct1 ’(c)))
(c2 (make-condition ct2 ’a 1 ’ b 2 ’c 3))
(c1 (extract-condition c2 ct1)))

(list (condition-has-type? c1 ct2)
(condition-has-type? c1 ct1)))

⇒ (#f #t)

7.3 Predefined Conditions

STklos implements all the conditions types which are defined in SRFI-35 (Conditions) and
SRFI-36 (I/O Conditions). However, the access functions which are (implicitely) defined in
those SRFIs are only available if the file |”full-conditions.stk”| is loaded. This can be done
with the following call

(require "full-conditions")

The following hierarchy of conditions is predefined:

http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-36/srfi-36.html

STklos Reference Manual

140 Exceptions and Conditions

&condition
&message (has "message" slot)
&serious
&error

&error-message (has "message", "location" and "backtrace" slots)
&i/o-error

&i/o-port-error (has a "port" slot)
&i/o-read-error
&i/o-write-error
&i/o-closed-error

&i/o-filename-error (has a "filename" slots)
&i/o-malformed-filename-error
&i/o-file-protection-error

&i/o-file-is-read-only-error
&i/o-file-already-exists-error
&i/o-no-such-file-error

&read-error (has the "line", "column", "position" and "span" slots)

STklos Object System 141

8 STklos Object System

8.1 Introduction

The aim of this chapter is to present STklos object system. Briefly stated, STklos gives
the programmer an extensive object system with meta-classes, multiple inheritance, generic
functions and multi-methods. Furthermore, its implementation relies on a Meta Object
Protocol (MOP) [8], in the spirit of the one defined for CLOS [9].

STklos implementation is derived from the version 1.3 of Tiny CLOS, a pure and clean
CLOS-like MOP implementation in Scheme written by Gregor Kickzales [7]. However, Tiny
CLOS implementation was designed as a pedagogical tool and consequently, completeness
and efficiency were not the author concern for it. STklos extends the Tiny CLOS model to
be efficient and as close as possible to CLOS, the Common Lisp Object System [9]. Some
features of STklos are also issued from Dylan [3] or SOS [5].

This chapter is divided in three parts, which have a quite different audience in mind:

• The first part presents the STklos object system rather informally; it is intended to
be a tutorial of the language and is for people who want to have an idea of the look

and feel of STklos.

• The second part describes the STklos object system at the external level (i.e. without
requiring the use of the Meta Object Protocol).

• The third and last part describes the STklos Meta Object Protocol. It is intended
for people whio want to play with meta programming.

8.2 Object System Tutorial

The STklos object system relies on classes like most of the current OO languages. Fur-
thermore, STklos provides meta-classes, multiple inheritance, generic functions and multi-
methods as in CLOS, the Common Lisp Object System [9] or Dylan [3]. This chapter
presents STklos in a rather informal manner. Its intent is to give the reader an idea of
the “look and feel” of STklos programming. However, we suppose here that the reader has
some basic notions of OO programming, and is familiar with terms such as classes, instances

or methods.

8.2.1 Class definition and instantiation

8.2.1.1 Class definition

A new class is defined with the define-class form. The syntax of define-class is close
to CLOS defclass:

STklos Reference Manual

142 STklos Object System

(define-class class (superclass1 superclass2 ...)
(slot-description1
slot-description2
...)
metaclass option)

The metaclass option will not be discussed here. The superclasses list specifies the super
classes of class (see inheritance for details).

A slot description gives the name of a slot and, eventually, some “properties” of this slot
(such as its initial value, the function which permit to access its value, ...). Slot descriptions
will be discussed in slot-definition.

As an example, consider now that we want to define a point as an object. This can be done
with the following class definition:

(define-class <point> ()
(x y))

This definition binds the symbol <point> to a new class whose instances contain two slots.
These slots are called x an y and we suppose here that they contain the coordinates of a 2D
point.

Let us define now a circle, as a 2D point and a radius:

(define-class <circle> (<point>)
(radius))

As we can see here, the class <circle> is constructed by inheriting from the class <point>
and adding a new slot (the radius slot).

8.2.1.2 Instance creation and slot access

Creation of an instance of a previously defined class can be done with the make procedure.
This procedure takes one mandatory parameter which is the class of the instance which
must be created and a list of optional arguments. Optional arguments are generally used to
initialize some slots of the newly created instance. For instance, the following form:

(define c (make <circle>))

creates a new <circle> object and binds it to the c Scheme variable.

Accessing the slots of the newly created circle can be done with the slot-ref and the slot-
set! primitives. The slot-set! primitive permits to set the value of an object slot and
slot-ref permits to get its value.

(slot-set! c ’x 10)
(slot-set! c ’y 3)
(slot-ref c ’x) ⇒ 10
(slot-ref c ’y) ⇒ 3

STklos Reference Manual

STklos Object System 143

Using the describe function is a simple way to see all the slots of an object at one time: this
function prints all the slots of an object on the standard output. For instance, the expression:

(describe c)

prints the following informations on the standard output:

#[<circle> 81aa1f8] is an an instance of class <circle>.
Slots are:

radius = #[unbound]
x = 10
y = 3

8.2.1.3 Slot Definition

When specifying a slot, a set of options can be given to the system. Each option is specified
with a keyword. For instance,

• :init-form can be used to supply a default value for the slot.

• :init-keyword can be used to specify the keyword used for initializing a slot.

• :getter can be used to define the name of the slot getter

• :setter can be used to define the name of the slot setter

:accessor can be used to define the name of the slot accessor (see below)To illustrate slot
description, we redefine here the <point> class seen before. A new definition of this class
could be:

(define-class <point> ()
((x :init-form 0 :getter get-x :setter set-x! :init-keyword :x)
(y :init-form 0 :getter get-y :setter set-y! :init-keyword :y)))

With this definition, the x and y slots are set to 0 by default. Value of a slot can also be
specified by calling make with the :x and :y keywords. Furthermore, the generic functions
get-x and set-x! (resp. get-y and set-y!) are automatically defined by the system to
read and write the x (resp. y) slot.

(define p1 (make <point> :x 1 :y 2))
(get-x p1) ⇒ 1
(set-x! p1 12)
(get-x p1) ⇒ 2

(define p2 (make <point> :x 2))
(get-x p2) ⇒ 2
(get-y p2) ⇒ 0

Accessors provide an uniform access for reading and writing an object slot. Writing a slot
is done with an extended form of set! which is close to the Common Lisp setf macro. A

STklos Reference Manual

144 STklos Object System

slot accessor can be defined with the :accessor option in the slot description. Hereafter, is
another definition of our <point> class, using an accessor:

(define-class <point> ()
((x :init-form 0 :accessor x-of :init-keyword :x)
(y :init-form 0 :accessor y-of :init-keyword :y)))

Using this class definition, reading the x coordianate of the p point can be done with:

(p c)

and setting it to 100 can be done using the extended set!

(set! (x-of p) 100)

Note: STklos also define slot-set! as the setter function of slot-ref (see setter). As
a consequence, we have:

(set! (slot-ref p ’y) 100)
(slot-ref p ’y) ⇒ 100

8.2.1.4 Virtual Slots

Suppose that we need a slot named area in circle objects which contain the area of the
circle. One way to do this would be to add the new slot to the class definition and have
an initialisation form for this slot which takes into account the radius of the circle. The
problem with this approach is that if the radius slot is changed, we need to change area
(and vice-versa). This is something which is hard to manage and if we don’t care, it is easy
to have a area and radius in an instance which are “un-synchronized”. The virtual slot
mechanism avoid this problem.

A virtual slot is a special slot whose value is calculated rather than stored in an object. The
way to read and write such a slot must be given when the slot is defined with the :slot-ref
and :slot-set! slot options.

A complete definition of the <circle> class using virtual slots could be:

(define-class <circle> (<point>)
((radius :init-form 0 :accessor radius :init-keyword :radius)
(area :allocation :virtual :accessor area

:slot-ref (lambda (o)
(let ((r (radius o)))
(* 3.14 r r)))

:slot-set! (lambda (o v)
(set! (radius o) (sqrt (/ v 3.14)))))))

Here is an example using this definition of <circle>

STklos Reference Manual

STklos Object System 145

(define c (make <circle> :radius 1))
(radius c) ⇒ 1
(area c) ⇒ 3.14
(set! (area x) (* 4 (area x)))
(area c) ⇒ 12.56 ; (i.e. 4 * Pi)

(radius c) ⇒ 2.0

Of course, we can also used the fucntion describe to visualize the slots of a given object.
Applied to the prvious c, it prints:

#[<circle> 81b2348] is an an instance of class <circle>.
Slots are:

area = 12.56
radius = 2.0
x = 0
y = 0

8.2.2 Inheritance

8.2.2.1 Class hierarchy and inheritance of slots

Inheritance is specified upon class definition. As said in the introduction, STklos supports
multiple inheritance. Hereafter are some classes definition:

(define-class A () (a))
(define-class B () (b))
(define-class C () (c))
(define-class D (A B) (d a))
(define-class E (A C) (e c))
(define-class F (D E) (f))

A, B, C have a null list of super classes. In this case, the system will replace it by the list which
only contains <object>, the root of all the classes defined by define-class. D, E, and F
use multiple inheritance: each class inherits from two previously defined classes. Those class
definitions define a hierarchy which is shown in figure 8.1. In this figure, the class <top> is
also shown; this class is the super class of all Scheme objects. In particular, <top> is the
super class of all standard Scheme types.

The set of slots of a given class is calculated by “unioning” the slots of all its super class.
For instance, each instance of the class D defined before will have three slots (a, b and d).
The slots of a class can be obtained by the class-slots primitive. For instance,

(class-slots A) ⇒ (a)
(class-slots E) ⇒ (a e c)
(class-slots F) ⇒ (b e c d a f)

Note: The order of slots is not significant.

STklos Reference Manual

146 STklos Object System

Figure 8.1 a class hierarchy

8.2.2.2 Class precedence list

A class may have more than one superclass.8

With single inheritance (only one superclass), it is easy to order the super classes from most
to least specific. This is the rule:

Rule 1: Each class is more specific than its superclasses.

With multiple inheritance, ordering is harder. Suppose we have

(define-class X ()
((x :init-form 1)))

(define-class Y ()
((x :init-form 2)))

(define-class Z (X Y)
(z :init-form 3))

In this case, given Rule 1, the Z class is more specific than the X or Y class for instances of Z.
However, the :init-form specified in X and Y leads to a problem: which one overrides the
other? Or, stated differently, which is the default initial value of the x slot of a Z instance.
The rule in STklos, as in CLOS, is that the superclasses listed earlier are more specific than
those listed later. So:

Rule 2: For a given class, superclasses listed earlier are more specific than
those listed later.

This section is an adaptation of Jeff Dalton’s (J.Dalton@ed.ac.uk) “Brief introduction to CLOS” which can8

be found at the URL http://www.aiai.ed.ac.uk/~jeff/clos-guide.html

http://www.aiai.ed.ac.uk/~jeff/clos-guide.html

STklos Reference Manual

STklos Object System 147

These rules are used to compute a linear order for a class and all its superclasses, from most
specific to least specific. This order is called the “class precedence list” of the class. Given
these two rules, we can claim that the initial form for the x slot of previous example is 1 since
the class X is placed before Y in the super classes of Z. These two rules are not always sufficient
to determine a unique order. However, they give an idea of how the things work. STklos

algorithm for calculating the class precedence list of a class is a little simpler than the CLOS
one described in (ref :bib ”AMOP”) for breaking ties. Consequently, the calculated class
precedence list by STklos algorithm can be different than the one given by the CLOS one
in some subtle situations. Taking the F class shown in Figure 8.1, the STklos calculated
class precedence list is

(f d e a b c <object> <top>)

whereas it would be the following list with a CLOS-like algorithm:

(f d e a c b <object> <top>)

However, it is usually considered a bad idea for programmers to rely on exactly what the
order is. If the order for some superclasses is important, it can be expressed directly in
the class definition. The precedence list of a class can be obtained by the function class-
precedence-list. This function returns a ordered list whose first element is the most
specific class. For instance,

(class-precedence-list D)
⇒ (#[<class> d 81aebb8] #[<class> a 81aab88]

#[<class> b 81aa720] #[<class> <object> 80eff90]
#[<class> <top> 80effa8])

However, this result is not too much readable; using the function class-name yields a clearer
result:

(map class-name (class-precedence-list D))
⇒ (d a b <object> <top>)

8.2.3 Generic function

8.2.3.1 Generic functions and methods

Neither STklos nor CLOS use the message passing mechanism for methods as most Object
Oriented languages do. Instead, they use the notion of generic function.A generic function
can be seen as a “tanker” of methods. When the evaluator requests the application of a
generic function, all the applicable methods of this generic function will be grabbed and the
most specific among them will be applied. We say that a method M is more specific than
a method M’ if the class of its parameters are more specific than the M’ ones. To be more
precise, when a generic function must be “called” the system

STklos Reference Manual

148 STklos Object System

1. searchs among all the generic function methods those which are applicable (i.e. the
ones which filter on types which are compatible with the actual argument list),

2. sorts the list of applicable methods in the “most specific” order,

3. calls the most specific method of this list (i.e. the first of the list of sorted methods).

The definition of a generic function is done with the define-generic macro. Definition of
a new method is done with the define-method macro.

Consider the following definitions:

(define-generic M)
(define-method M((a <integer>) b) ’integer)
(define-method M((a <real>) b) ’real)
(define-method M(a b) ’top)

The define-generic call defines M as a generic function. Note that the signature of the
generic function is not given upon definition, contrarily to CLOS. This permits methods
with different signatures for a given generic function, as we shall see later. The three next
lines define methods for the M generic function. Each method uses a sequence of parameter

specializers that specify when the given method is applicable. A specializer permits to
indicate the class a parameter must belong (directly or indirectly) to be applicable. If no
specializer is given, the system defaults it to <top>>. Thus, the first method definition is
equivalent to

(define-method M((a <integer>) (b <top>)) ’integer)

Now, let us look at some possible calls to generic function M:

(M 2 3) ⇒ integer
(M 2 #t) ⇒ integer
(M 1.2 ’a) ⇒ real
(M #t #f) ⇒ top
(M 1 2 3) ⇒ error no method with 3 parameters

The preceding methods use only one specializer per parameter list. Of course, each parameter
can use a specializer. In this case, the parameter list is scanned from left to right to determine
the applicability of a method. Suppose we declare now

(define-method M ((a <integer>) (b <number>))
’integer-number)

(define-method M ((a <integer>) (b <real>))
’integer-real)

(define-method M (a (b <number>))
’top-number)

(define-method M (a b c)
’three-parameters)

STklos Reference Manual

STklos Object System 149

In this case,

(M 1 2) ⇒ integer-integer
(M 1 1.0) ⇒ integer-real
(M ’a 1) ⇒ top-number
(M 1 2 3) ⇒ three-parameters

Notes:

1. Before defining a new generic functiondefine-generic, verifies if the symbol given
as parameter is already bound to a procedure in the current environment. If so, this
procedure is added, as a method to the newly created generic function. For instance:

(define-generic log) ; transform "log" in a generic function

(define-method log ((s <string>) . l)
(apply format (current-error-port) s l)
(newline (current-error-port)))

(log "Hello, ~a" "world") a Hello, world
(log 1) ⇒ 0 ; standard "log" procedure

2. define-method automatically defines the generic function if it has not been defined
before. Consequently, most of the time, the define-generic is not needed.

8.2.3.2 Next-method

When a generic function is called, the list of applicable methods is built. As mentioned
before, the most specific method of this list is applied (see ??). This method may call, if
needed, the next method in the list of applicable methods. This is done by using the special
form next-method. Consider the following definitions

(define-method Test((a <integer>))
(cons ’integer (next-method)))

(define-method Test((a <number>))
(cons ’number (next-method)))

(define-method Test(a)
(list ’top))

With those definitions, we have:

(Test 1) ⇒ (integer number top)
(Test 1.0) ⇒ (number top)
(Test #t) ⇒ (top)

8.2.3.3 Standard generic functions

Printing objects

STklos Reference Manual

150 STklos Object System

When the Scheme primitives write or display are called with a parameter which is an
object, the write-object or display-object generic functions are called with this object
and the port to which the printing must be done as parameters. This facility permits to
define a customized printing for a class of objects by simply defining a new method for this
class. So, defining a new printing method overloads the standard printing method (which
just prints the class of the object and its hexadecimal address).

For instance, we can define a customized printing for the <point> used before as:

(define-method display-object ((p <point>) port)
(format port "{Point x=~S y=~S}" (slot-ref p ’x) (slot-ref p ’y)))

With this definition, we have

(define p (make <point> :x 1 :y 2))
(display p) a {Point x=1 y=2}

The Scheme primitive write tries to write objects, in such a way that they are readable back
with the read primitive. Consequently, we can define the writing of a <point> as a form
which, when read, will build back this point:

(define-method write-object ((p <point>) port)
(format port "#,(make <point> :x ~S :y ~S"

(get-x p) (get-y p)))

With this method, writing the p point defined before prints the following text on the output
port:

#,(make <point> :x 1 :y 2)

Note here the usage of the “#,” notation of SRFI-10 (Sharp Comma External Form) to
“evaluate” the form when reading it9.

Comparing objects

When objects are compared with the eqv? or equal? Scheme standard primitives, STklos

calls the object-eqv? or object-equal? generic functions. This facility permits to define
a customized comparison function for a class of objects by simply defining a new method for
this class. Defining a new comparison method overloads the standard comparaison method
(which always returns #f). For instance we could define the following method to compare
points:

(define-method object-eqv? ((a <point>) (b <point>))
(and (= (point-x a) (point-x b))

(= (point-y a) (point-y b))))

We suppose here that we are in a context where9

(define-reader-ctor ’make make)

as already been evaluated

http://srfi.schemers.org/srfi-10/srfi-10.html

STklos Reference Manual

STklos Object System 151

8.3 Object System Reference

8.3.1 Class Definition

STklos Reference Manual

152

Customizations 153

9 Customizations

STklos environement can be customized using parameters objects. These parmaters are
listed below.

(real-precision) STklos

procedure(real-precision value)

This parameter object permits to change the default precision used to print real
numbers.

(real-precision) ⇒ 15
(define f 0.123456789)
(display f) a 0.123456789
(real-precision 3)
(display f) a 0.123

(read-case-sensitive) STklos

procedure(read-case-sensitive value)

This parameter object permits to change the default behaviour of the read primitive
when reading a symbol. If this parameter has a a true value a symbol is not con-
verted to a default case when interned. Since R5RS requires that symbol are case
insignificant, the default value of this parameter is ?f.

(read-case-sensitive) ⇒ ?f
(define x ’Symbol)
(display x) a symbol
(read-case-sensitive ?t)
(define y ’Symbol)
(display y) a Symbol

Note: Default behaviour can be changed for a whole execution with the --case-
sensitive option.

Note: See also syntax for (special characters) in symbols.

(load-path) STklos

procedure(load-path value)

load-path is a parameter object. It returns the current load path. The load path is
a list of strings which correspond to the directories in which a file must be searched
for loading. Directories of the load path are prepended (in their apparition order) to

STklos Reference Manual

154 Customizations

the file name given to load or try-load until the file can be loaded.

The initial value of the current load path can be set from the shell, by setting the
STKLOS_LOAD_PATH shell variable.

Giving a value to the parameter load-path permits to change the current list of
paths.

(load-suffixes) STklos

procedure(load-suffixes value)

load-suffixes is a parameter object. It returns the list of possible suffixes for a
Scheme file. Each suffix, must be a string. Suffixes are appended (in their apparition
order) to a file name is appended to a file name given to load or try-load until the
file can be loaded.

(load-verbose) STklos

procedure(load-verbose value)

load-verbose is a parameter object. It permits to display the path name of the files
whch are loaded by load or try-load on the current error port, when set to a true
value. If load-verbose is set to #f, no message is printed.

Using the SLIB package 155

10 Using the SLIB package

Aubrey Jaffer maintains a package called SLIB which is a portable Scheme library which
provides compatibility and utility functions for all standard Scheme implementations. To
use this package, you have just to type

(require "slib")

and follow the instructions given in the SLIB library to use a particular package.

Note: SLIB uses also the require and provide mechanism to load components of the library.
Once SLIB has been loaded, the standard STklos require and provide are overloaded
such as if their parameter is a string this is the old STklos procedure which is called, and
if their parameter is a symbol, this is the SLIB one which is called.

http://swiss.csail.mit.edu/~jaffer/SLIB

STklos Reference Manual

156

SRFIs 157

11 SRFIs

The Scheme Request for Implementation (SRFI) process grew out of the Scheme Workshop
held in Baltimore, MD, on September 26, 1998, where the attendees considered a number
of proposals for standardized feature sets for inclusion in Scheme implementations. Many of
the proposals received overwhelming support in a series of straw votes. Along with this there
was concern that the next Revised Report would not be produced for several years and this
would prevent the timely implementation of standardized approaches to several important
problems and needs in the Scheme community.

Only the implemented SRFIs are (briefly) presented here. For further information on each
SRFI, please look at the official SRFI site.

SRFI-0 – Feature-based conditional expansion construct

SRFI-0 defines the cond-expand special form. It is fully supported by STklos. STklos

defines several features identifiers which are of the form srfi-n where n represents the number
of the SRFI supported by the implementation (for instance srfi-1 or srfi-30).

STklos cond-expand accepts also some feature identifiers which are the same that the ones
defined in igure 11.1

Furthermore, the feature identifier stklos is defined for application which need to know on
which Scheme implementation they are running on.

SRFI-1 – List Library

SRFI-1 defines an extensive library for list manipulation. The implementation used in
STklos is based on the reference implementation from Olin Shivers. To use, SRFI-1 you need
to insert the following expression

(require "srfi-1")

in your code or uses the cond-expand special form.

SRFI-2 – AND-LET*: an AND with local bindings, a guarded LET* special form

SRFI-2 defines an and form with local binding which acts as a guarded let*. To use, SRFI-2
you need to insert the following expression

(require "srfi-2")

in your code or uses the cond-expand special form.

http://srfi.schemers.org
http://srfi.schemers.org
http://srfi.schemers.org
http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-2/srfi-2.html

STklos Reference Manual

158 SRFIs

SRFI-4 – Homogeneous numeric vector datatypes

SRFI-4 defines a set of data types for vectors whose element are of the same numeric type
(homogeneous vectors). To use SRFI-4, you need to insert the following expression

(require "srfi-4")

in your code or uses the cond-expand special form.

SRFI-6 – Basic String Ports

SRFI-6 is fully supported and is completely described in this document (procedures open-
input-string, open-output-string and get-output-string).

SRFI-7 – Feature-based program configuration language

SRFI-7 is fully supported. To use SRFI-7, you need to insert the following expression

(require "srfi-7")

in your code or uses the cond-expand special form.

SRFI-8 – Receive: Binding to multiple values

SRFI-8 is fully supported and is completely described in this document (special form re-
ceive)

SRFI-9 – Defining Record Types

SRFI-9 is fully supported (the implementation uses STklos classes to implement SRFI-9
records). To use SRFI-9, you need to insert the following expression

(require "srfi-9")

in your code or uses the cond-expand special form.

SRFI-10 – Sharp Comma External Form

SRFI-10 is fully supported. This SRFI extends the STklos reader with the “#,” notation
which is fully described in this document (see define-reader-ctor).

SRFI-11 – Syntax for receiving multiple values

SRFI-11 is fully supported. To use SRFI-11, you need to insert the following expression

(require "srfi-11")

http://srfi.schemers.org/srfi-4/srfi-4.html
http://srfi.schemers.org/srfi-6/srfi-6.html
http://srfi.schemers.org/srfi-7/srfi-7.html
http://srfi.schemers.org/srfi-8/srfi-8.html
http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-10/srfi-10.html
http://srfi.schemers.org/srfi-11/srfi-11.html

STklos Reference Manual

SRFIs 159

in your code or uses the cond-expand special form.

SRFI-13 – String Library

SRFI-13 is fully supported. To use SRFI-13, you need to insert the following expression

(require "srfi-13")

in your code or uses the cond-expand special form.

SRFI-14 – Character-Set Library

SRFI-14 is fully supported. To use SRFI-14, you need to insert the following expression

(require "srfi-14")

in your code or uses the cond-expand special form.

SRFI-16 – Syntax for procedures of variable arity

SRFI-16 is fully supported and is completely described in this document (procedure case-
lambda).

SRFI-17 – Generalized set!

SRFI-17 is fully supported and is completely described in this document (procedures set!
and setter). However, the following expression

(require "srfi-17")

in your code (or the use of the cond-expand special form) permits to define the setters for
the (numerous) cXXXXr list procedures.

SRFI-22 – Running Scheme Scripts on Unix

SRFI-22 describes basic prerequisites for running Scheme programs as Unix scripts in a
uniform way. Specifically, it describes:

• the syntax of Unix scripts written in Scheme,

• a uniform convention for calling the Scheme script interpreter, and

• a method for accessing the Unix command line arguments from within the Scheme
script.

SRFI-22 (Running Scheme Scripts on Unix) recommends to invoke the Scheme script in-
terpreter from the script via a /usr/bin/env trampoline, like this:

http://srfi.schemers.org/srfi-13/srfi-13.html
http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-16/srfi-16.html
http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-22/srfi-22.html

STklos Reference Manual

160 SRFIs

#!/usr/bin/env <executable>

where <executable> can recover several specified names. STklos uses only the name
stklos-script for <executable>.

Here is an example of the classical echo command (without option) in Scheme:

#!/usr/bin/env stklos-script

(define (main arguments)
(for-each (lambda (x) (display x) (display #space))

(cdr arguments))
(newline)
0)

SRFI-23 – Error reporting mechanism

SRFI-23 is fully supported. See the documentation of the (ref :mark ”error”) primitive form
more information (in fact STklos error is more general than the one defined in SRFI-23).

SRFI-26 – Notation for Specializing Parameters without Currying

SRFI-26 is fully supported. To use SRFI-31, you need to insert the following expression

(require "srfi-26")

in your code or uses the cond-expand special form.

SRFI-27 – Source of random bits

SRFI-27 is fully supported. See random-integer and random-real.

SRFI-28 – Basic Format Strings

SRFI-28 is fully supported. See the documentation of the format primitive form more
information (in fact STklos format is more general than the one defined in SRFI-28
(Basic Format Strings)).

SRFI-30 – Nested Multi-line Comments

SRFI-30 is fully supported by STklos reader.

SRFI-31 – A special form for recursive evaluation

SRFI-31 is fully supported. To use SRFI-31, you need to insert the following expression

(require "srfi-31")

http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-26/srfi-26.html
http://srfi.schemers.org/srfi-27/srfi-27.html
http://srfi.schemers.org/srfi-28/srfi-28.html
http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-31/srfi-31.html

STklos Reference Manual

SRFIs 161

in your code or uses the cond-expand special form.

SRFI-34 – Exception Handling for Programs

SRFI-34 is fully supported and is completely described in this document (see with-exception-
handler and guard).

SRFI-35 – Conditions

SRFI-35 is fully supported. To use SRFI-35, you need to insert the following expression

(require "srfi-35")

in your code or uses the cond-expand special form. See section ?? for the predefined
conditions and when it is required to load this file.

SRFI-36 – I/O Conditions

SRFI-36 is fully supported. To use SRFI-36, you need to insert the following expression

(require "srfi-36")

in your code or uses the cond-expand special form. See section ?? for the predefined
conditions and when it is required to load this file.

SRFI-38 – External representation of shared structures

SRFI-38 is fully supported by STklos reader.

SRFI-39 – Parameters objects

SRFI-39 is fully supported and is completely described in this document (procedures make-parameter
and parameterize).

SRFI-48 – Intermediate Format Strings

SRFI-48 is fully supported and is completely described in this document (procedure for-
mat).

SRFI-55 – Require-extension

SRFI-55 is fully supported and is completely described in this document (procedure require-extension).

Furthermore, STklos also accepts the symbols defined in figure 11.1 in a require-extension
clause.

http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-36/srfi-36.html
http://srfi.schemers.org/srfi-38/srfi-38.html
http://srfi.schemers.org/srfi-39/srfi-39.html
http://srfi.schemers.org/srfi-48/srfi-48.html
http://srfi.schemers.org/srfi-55/srfi-55.html

STklos Reference Manual

162 SRFIs

Symbol require SRFI(s)

lists srfi-1

and-let* srfi-2

hvectors srfi-4

program srfi-7

records srfi-9

strings srfi-13

charsets srfi-14

case-lambda srfi-16

error srfi-23

random srfi-27

conditions srfi-34, srfi-35, srfi-36

hash-tables srfi-69

Figure 11.1 Feature identifiers

SRFI-60 – Integers as bits

SRFI-60 is fully supported. To use SRFI-60, you need to insert the following expression

(require "srfi-60")

in your code or uses the cond-expand special form.

SRFI-62 – S-expression comments

SRFI-62 is fully supported. See ??

SRFI-69 – Basic Hash Tables

SRFI-69 is fully supported. Note that the default comparison function in STklos is eq?
whereas it is equal? for the SRFI. Furthermore the hash functions defined in the SRFI are
not defined by default in STklos. To have a fully compliant SRFI-69 (Basic Hash Tables)
behaviour, you need to insert the following expression

(require "srfi-69")

in your code or uses the cond-expand special form.

SRFI-70 – Numbers

SRFI-70 is fully supported.

http://srfi.schemers.org/srfi-60/srfi-60.html
http://srfi.schemers.org/srfi-62/srfi-62.html
http://srfi.schemers.org/srfi-69/srfi-69.html
http://srfi.schemers.org/srfi-70/srfi-70.html

Index 163

12 Index

#

#eof, 75, 75

&

&condition, 137, 137

*
*, 32, 32

+
+, 32, 32

,
, in quasiquote, 17, 17
,@ in quasiquote, 17, 17

-
-, 32, 32

/
/, 32, 32

:
:key parameter, 5, 5
:optional parameter, 5, 5

:rest parameter, 5, 5

<

<, 31, 31
<=, 31, 31

=
=, 31, 31

>

>, 31, 31
>=, 31, 31

A
abs, 33, 33
acos, 35, 35
address-of, 104, 104
alist->hash-table, 83, 83
all-modules, 26, 26
and, 11, 11
angle, 36, 36
any, 60, 60
append, 41, 41
append!, 42, 42
apply, 59, 59
apropos, 108, 108
arg-usage, 103, 103
argc, 100, 100
argv, 100, 100
ASCII, 47, 47
asin, 35, 35
assignment, 8, 8
... generalized, 159

assoc, 43, 43
assq, 43, 43
assv, 43, 43
atan, 35, 35

B
backquote, 17, 17
basename, 98, 98
begin, 15, 15
bignum?, 30, 30
binding constructs, 12, 12
bit-and, 38, 38
bit-not, 38, 38
bit-or, 38, 38
bit-shift, 38, 38
bit-xor, 38, 38
boolean value, 39, 39
boolean?, 39, 39

C
caaaar, 40, 40
caaadr, 40, 40
caaar, 40, 40
caadar, 40, 40
caaddr, 40, 40
caadr, 40, 40
caar, 40, 40
cadaar, 40, 40
cadadr, 40, 40
cadar, 40, 40
caddar, 40, 40
cadddr, 40, 40
caddr, 40, 40
cadr, 40, 40
call by need, 16, 16
call-with-current-continuation,
61, 61

STklos Reference Manual

164 Index

call-with-input-file, 66, 66
call-with-input-string, 67, 67

call-with-output-file, 66, 66
call-with-output-string, 67,
67
call-with-values, 63, 63
call/cc, 61, 61
call/ec, 63, 63
canonical-file-name, 97, 97
car, 39, 39
case, 11, 11
case-lambda, 159, 7, 7
cdaaar, 40, 40
cdaadr, 40, 40
cdaar, 40, 40
cdadar, 40, 40
cdaddr, 40, 40
cdadr, 40, 40
cdar, 40, 40
cddaar, 40, 40
cddadr, 40, 40
cddar, 40, 40
cdddar, 40, 40
cddddr, 40, 40
cdddr, 40, 40
cddr, 40, 40
cdr, 40, 40
ceiling, 34, 34
char->integer, 48, 48
char-alphabetic?, 48, 48
char-ci<=?, 48, 48
char-ci<?, 48, 48
char-ci=?, 48, 48
char-ci>=?, 48, 48
char-ci>?, 48, 48
char-downcase, 49, 49
char-lower-case?, 48, 48
char-numeric?, 48, 48
char-ready?, 75, 75
char-upcase, 49, 49
char-upper-case?, 48, 48
char-whitespace?, 48, 48
char<=?, 47, 47
char<?, 47, 47
char=?, 47, 47
char>=?, 47, 47
char>?, 47, 47
char?, 47, 47

character, 47, 47
character sets, 159, 159
chdir, 97, 97
chmod, 97, 97
class, 141, 141
... slot description, 142
... definition, 141
class precedence list, 146,
146
class-name, 147, 147
class-precedence-list, 147, 147

clock, 100, 100
close-input-port, 72, 72
close-output-port, 72, 72
close-port, 72, 72
closure, 5, 5
closure?, 7, 7
comments, 3, 3
complex?, 30, 30
cond, 10, 10
condition, 135, 135
condition-has-type?, 138, 138

condition-ref, 138, 138
condition-type?, 137, 137
condition?, 138, 138
conditional, 9, 9
cons, 39, 39
copy-file, 96, 96
copy-port, 96, 96
copy-tree, 44, 44
cos, 35, 35
current-date, 89, 89
current-error-port, 68, 68
current-input-port, 67, 67
current-loading-file, 80, 80
current-module, 24, 24
current-output-port, 67, 67
current-time, 87, 87

D
date, 91, 91
date->seconds, 90, 90
date->string, 90, 90
date-day, 90, 90
date-dst, 90, 90

date-hour, 90, 90
date-minute, 90, 90
date-month, 90, 90
date-second, 89, 89
date-tz, 90, 90
date-week-day, 90, 90
date-year, 90, 90
date-year-day, 90, 90
date?, 89, 89
decode-float, 38, 38
decompose-file-name, 97, 97
define-class, 141, 141
define-generic, 148, 148
define-macro, 148, 18, 18
define-module, 23, 23
define-reader-ctor, 158, 74,
74
define-struct, 56, 56
define-syntax, 18, 18
delay, 16, 16
delete, 45, 45
delete!, 45, 45
denominator, 34, 34
die, 104, 104
dirname, 98, 98
display, 149, 77, 77
do, 15, 15
dotimes, 16, 16
dynamic-wind, 64, 64

E
eof-object, 75, 75
eof-object?, 75, 75
eq?, 28, 28
equal?, 29, 29
eqv?, 27, 27
error, 160, 106, 106
eval, 65, 65
eval-from-string, 65, 65
even?, 31, 31
every, 60, 60
exact->inexact, 36, 36
exact?, 30, 30
exception, 135, 135
exec, 103, 103
exec-list, 103, 103
exit, 104, 104

STklos Reference Manual

Index 165

exp, 35, 35
expand-file-name, 97, 97
export, 24, 24
expt, 36, 36
extract-condition, 139, 139

F
false value, 39, 39
file-exists?, 96, 96
file-is-directory?, 96, 96
file-is-executable?, 96, 96
file-is-readable?, 96, 96
file-is-regular?, 96, 96
file-is-writable?, 96, 96
file-separator, 98, 98
file-size, 96, 96
filter, 44, 44
filter!, 44, 44
find-module, 24, 24
find-path, 80, 80
finite?, 31, 31
floor, 34, 34
fluid-let, 14, 14
flush-output-port, 79, 79
for-each, 60, 60
force, 61, 61
fork, 93, 93
format, 161, 160, 78, 78
full-current-time, 87, 87

G
gc, 106, 106
gcd, 34, 34
generic function, 147, 147
gensym, 46, 46
get-output-string, 158, 71,
71
get-password, 104, 104
getcwd, 97, 97
getenv, 99, 99
getpid, 100, 100
glob, 98, 98
global variable, 23, 23
GTK+, 3, 3
guard, 161, 136, 136

H
hash tables, 81, 81
hash-table->alist, 83, 83
hash-table-copy, 86, 86
hash-table-delete!, 84, 84
hash-table-equivalence-function,
86, 86
hash-table-exists?, 84, 84
hash-table-fold, 86, 86
hash-table-for-each, 85, 85
hash-table-hash, 83, 83
hash-table-hash-function, 86,
86
hash-table-keys, 86, 86
hash-table-map, 85, 85
hash-table-merge!, 86, 86
hash-table-ref, 84, 84
hash-table-ref/default, 84, 84

hash-table-set!, 84, 84
hash-table-size, 86, 86
hash-table-stats, 87, 87
hash-table-update!, 85, 85
hash-table-update!/default, 85,
85
hash-table-values, 86, 86
hash-table-walk, 85, 85
hash-table?, 83, 83
hostname, 100, 100
hygienic macros, 17, 17

I
if, 9, 9
imag-part, 36, 36
import, 24, 24
in-module, 26, 26
inexact->exact, 36, 36
inexact?, 30, 30
infinite?, 31, 31
input, 66, 66
input-file-port?, 67, 67
input-port?, 67, 67
input-string-port?, 67, 67
input-virtual-port?, 67, 67

instance, 142, 142
integer->char, 48, 48
integer?, 30, 30
interactive-port?, 67, 67

K
key-delete, 81, 81
key-delete!, 81, 81
key-get, 81, 81
key-set!, 81, 81
keyword, 80, 3, 3
keyword parameter, 5, 5
keyword->string, 81, 81
keyword?, 80, 80

L
lambda, 5, 5
last-pair, 43, 43
lazy evaluation, 16, 16
lcm, 34, 34
length, 41, 41
let, 12, 12
let*, 13, 13
let*-values, 158, 158
let-syntax, 19, 19
let-values, 158, 158
letrec, 13, 13
letrec-syntax, 20, 20
list, 41, 39, 39
list*, 41, 41
list->string, 51, 51
list->vector, 54, 54
list-ref, 43, 43
list-tail, 42, 42
list?, 41, 41
load, 79, 79
load-path, 153, 153
load-suffixes, 154, 154
load-verbose, 154, 154
log, 35, 35
low level macros, 17, 17

M

STklos Reference Manual

166 Index

machine-type, 100, 100
macro-expand, 20, 20
Macros, 20
... expansion, 20
macros, 17, 17
... referentially transparent,
18
magnitude, 36, 36
make, 142, 142
make-client-socket, 93, 93
make-compound-condition, 139,
139
make-compound-condition-type,
137, 137
make-condition, 138, 138
make-condition-type, 137, 137

make-date, 89, 89
make-hash-table, 82, 82
make-keyword, 81, 81
make-parameter, 105, 105
make-path, 98, 98
make-polar, 36, 36
make-rectangular, 36, 36
make-server-socket, 93, 93
make-string, 49, 49
make-struct, 57, 57
make-struct-type, 56, 56
make-vector, 54, 54
map, 59, 59
match-case, 131, 131
match-lambda, 132, 132
max, 31, 31
member, 43, 43
memq, 43, 43
memv, 43, 43
Method, 149
... next, 149
method, 147, 147
... more specific, 147
min, 31, 31
module-exports, 26, 26
module-imports, 26, 26
module-name, 26, 26
module-symbols, 26, 26
module?, 24, 24
modules, 23, 23
modulo, 33, 33
multi-line comment, 3, 3

multiple values, 63, 63

N
name space, 23, 23
negative?, 31, 31
newline, 77, 77
next-method, 149, 149
not, 39, 39
null?, 40, 40
number->string, 37, 37
number?, 30, 30
numerator, 34, 34

O
odd?, 31, 31
open-file, 71, 71
open-input-file, 69, 69
open-input-string, 158, 69,
69
open-input-virtual, 69, 69
open-output-file, 70, 70
open-output-string, 158, 70,
70
open-output-virtual, 70, 70
or, 11, 11
output, 66, 66
output-file-port?, 67, 67
output-port?, 67, 67
output-string-port?, 67, 67
output-virtual-port?, 67, 67

P
pair, 39, 39
pair-mutable?, 41, 41
pair?, 39, 39
parameter?, 106, 106
parameterize, 105, 105
parse-arguments, 101, 101
pattern language, 132, 132
peek-char, 75, 75
PID, 91, 91
port->sexp-list, 76, 76
port->string, 76, 76

port->string-list, 76, 76
port-closed?, 73, 73
port-current-line, 72, 72
port-current-position, 72, 72

port-file-name, 72, 72
port-idle-register!, 73, 73
port-idle-reset!, 73, 73
port-idle-unregister!, 73, 73
port-rewind, 72, 72
positive?, 31, 31
posixify-file-name, 98, 98
pp, 108, 108
pretty-print, 108, 108
procedure, 5, 5
... variable arity, 159
procedure parameter, 5, 5
... :rest, 5
... :key, 5
... :optional, 5
procedure?, 59, 59
process, 91, 91
process-alive?, 92, 92
process-continue, 92, 92
process-error, 92, 92
process-exit-status, 92, 92
process-input, 92, 92
process-kill, 92, 92
process-list, 93, 93
process-output, 92, 92
process-pid, 92, 92
process-send-signal, 92, 92
process-stop, 92, 92
process-wait, 92, 92
process?, 92, 92
program-name, 100, 100
promise, 16, 16
promise?, 16, 16
provide, 155, 80, 80
provided?, 80, 80

Q
quasiquote, 17, 17, 17
quote, 5, 5
quotient, 33, 33

STklos Reference Manual

Index 167

R
raise, 136, 136
random-integer, 160, 38, 38
random-real, 160, 38, 38
rational?, 30, 30
rationalize, 35, 35
read, 73, 73
read-case-sensitive, 153, 153

read-char, 74, 74
read-chars, 74, 74
read-chars!, 74, 74
read-from-string, 76, 76
read-line, 75, 75
read-with-shared-structure, 74,
74
real-part, 36, 36
real-precision, 153, 153
real?, 30, 30
receive, 158, 63, 63
regexp-match, 129, 129
regexp-match-positions, 129,
129
regexp-quote, 130, 130
regexp-replace, 130, 130
regexp-replace-all, 130, 130
regexp?, 129, 129
register-exit-function!, 104,
104
regular expression, 111, 111
remainder, 33, 33
remove, 44, 44
remove!, 44, 44
remove-file, 96, 96
rename-file, 96, 96
repl, 108, 108
require, 155, 80, 80
require-extension, 161, 107,
107
require/provide, 80, 80
reverse, 42, 42
reverse!, 42, 42
round, 34, 34
run-process, 91, 91
running-os, 99, 99

S

script files, 159, 159
scripts files, 3, 3
seconds->date, 87, 87
seconds->list, 89, 89
seconds->string, 87, 87
seek-file-port, 72, 72
select-module, 25, 25
set!, 8, 143, 8
... generalized, 159
set-car!, 40, 40
set-cdr!, 40, 40
setenv!, 99, 99
setter, 159, 9, 9
sin, 35, 35
sleep, 100, 100
SLIB, 17, 17
slot, 144
... accessor, 143
... setter, 143
... getter, 143
... initialization, 143
... definition, 143
... accessing, 142
... accessing, 142
slot-ref, 142, 142
slot-set!, 142, 142
socket-accept, 94, 94
socket-client?, 95, 95
socket-host-address, 95, 95
socket-host-name, 95, 95
socket-input, 95, 95
socket-local-address, 95, 95
socket-output, 95, 95
socket-port-number, 95, 95
socket-server?, 95, 95
socket-shutdown, 93, 93
socket?, 94, 94
sockets, 93, 93
sort, 55, 55
sqrt, 36, 36
SRFI, 155, 155
SRFI-0, 157, 157
SRFI-1, 157, 157
SRFI-10, 158, 74, 74
SRFI-11, 158, 158
SRFI-13, 159, 52, 52
SRFI-14, 159, 159
SRFI-16, 159, 159

SRFI-17, 159, 159
SRFI-2, 157, 157
SRFI-22, 159, 101, 3, 3
SRFI-23, 160, 106, 106
SRFI-26, 160, 160
SRFI-27, 160, 160
SRFI-28, 160, 77, 77
SRFI-30, 160, 3, 3
SRFI-31, 160, 160
SRFI-34, 161, 161
SRFI-35, 161, 139, 139
SRFI-36, 161, 139, 139
SRFI-38, 161, 77, 73, 73
SRFI-39, 161, 161
SRFI-4, 157, 157
SRFI-48, 161, 161
SRFI-55, 161, 161
SRFI-6, 158, 71, 70, 69, 69
SRFI-60, 162, 162
SRFI-62, 162, 162
SRFI-69, 162, 162
SRFI-7, 158, 158
SRFI-70, 162, 162
SRFI-8, 158, 158
SRFI-9, 158, 158
STk, 3, 3
STKLOS_LOAD_PATH, 79,
79
string, 49, 49, 49
string libraries, 159, 159
string port, 66, 66
string->html, 109, 109
string->list, 51, 51
string->number, 37, 37
string->regexp, 129, 129
string->symbol, 46, 46
string->uninterned-symbol, 46,
46
string-append, 51, 51
string-ci<=?, 50, 50
string-ci<?, 50, 50
string-ci=?, 50, 50
string-ci>=?, 50, 50
string-ci>?, 50, 50
string-copy, 51, 51
string-downcase, 52, 52
string-downcase!, 52, 52
string-fill!, 51, 51
string-find?, 51, 51

STklos Reference Manual

168 Index

string-index, 51, 51
string-length, 49, 49
string-mutable?, 51, 51
string-ref, 50, 50
string-set!, 50, 50
string-split, 51, 51
string-titlecase, 53, 53
string-titlecase!, 53, 53
string-upcase, 52, 52
string-upcase!, 52, 52
string<=?, 50, 50
string<?, 50, 50
string=?, 50, 50
string>=?, 50, 50
string>?, 50, 50
string?, 49, 49
struct->list, 58, 58
struct-is-a?, 58, 58
struct-ref, 58, 58
struct-set!, 58, 58
struct-type, 58, 58
struct-type-change-writer!, 57,
57
struct-type-name, 57, 57
struct-type-parent, 57, 57
struct-type-slots, 56, 56
struct-type?, 56, 56
struct?, 57, 57
structures, 55, 55
substring, 50, 50
sxhash Common Lisp Func-
tion, 83, 83
symbol->string, 46, 46
symbol-value, 25, 25
symbol-value*, 26, 26
symbol?, 45, 45
syntax-rules, 19, 19
system, 103, 103

T
tan, 35, 35
temporary-file-name, 96, 96
tilde expansion, 97, 97
time, 100, 100
Tk, 3, 3
trace, 108, 108
true value, 39, 39
truncate, 34, 34
try-load, 79, 79

U
unless, 12, 12
unquote, 17, 17
unquote-splicing, 17, 17
unsetenv!, 99, 99
until, 16, 16
untrace, 108, 108
uri-parse, 108, 108

V
values, 63, 63
variable, 23
... global, 23
vector, 54, 54
vector->list, 54, 54
vector-copy, 55, 55
vector-fill!, 55, 55
vector-length, 54, 54
vector-mutable?, 55, 55
vector-ref, 54, 54
vector-resize, 55, 55
vector-set!, 54, 54

vector?, 53, 53
vectors, 53, 53
version, 100, 100
virtual port, 66, 66
virtual slot, 144, 144
void, 106, 106

W
when, 12, 12
while, 16, 16
winify-file-name, 97, 97
with-error-to-file, 68, 68
with-error-to-port, 69, 69
with-exception-handler, 161,
135, 135
with-handler, 135, 135
with-input-from-file, 68, 68
with-input-from-port, 69, 69

with-input-from-string, 68,
68
with-output-to-file, 68, 68
with-output-to-port, 69, 69
with-output-to-string, 69, 69

write, 149, 76, 76
write*, 76, 76
write-char, 77, 77
write-chars, 77, 77
write-with-shared-structure, 77,
77

Z
zero?, 31, 31

Index 169

Bibliography

[1] – Bigloo Home Page.

[2] – The GTK+ Toolkit Home Page.

[3] Apple Computer – Dylan: an Object Oriented Dynamic Language – Apple, April,
1992.

[4] C. Queinnec and J-M. Geffroy – Partial Evaluation Applied to Symbolic Pattern
Matching with Intelligent Backtrack – Workshop in Static Analysis, Bigre, (81–82),
Bordeaux (France), September, 1992.

[5] Chris Hanson – The SOS Reference Manual, version 1.5 – March, 1993.

[6] Erick Gallesio – Reference Manual – RT 95-31a, I3S CNRS / Université de Nice -
Sophia Antipolis, juillet, 1995, pp. 82.

[7] Gregor Kickzales – Tiny-Clos – December, 1992.

[8] Gregor Kickzales, Jim de Rivières and Daniel G. Bobrow – The Art of Meta Object
Protocol – MIT Press, 1991.

[9] Guy L. Steele Jr. – Common Lisp: the Language, 2nd Edition – Digital Press, 12
Crosby Drive, Bedford, MA 01730, USA, 1990.

[10] ISO/IEC – Information technology, Processing Languages, Document Style
Semantics and Specification Languages (DSSSL) – 10179:1996(E), ISO, , 1996.

[11] John K. Ousterhout – An X11 toolkit based on the Tcl Language – USENIX
Winter Conference, January, 1991, pp. 105–115.

[12] Kelsey, R. and Clinger, W. and Rees, J. – The Revised5 Report on the Algorith-
mic Language Scheme – Higher-Order and Symbolic Computation, 11(1), Sep, 1998.

[13] Philip Hazel – PCRE (Perl Compatible Regular Expressions) Home page.

[14] Sho-Huan Simon Tung and R. Kent Dybvig – Reliable Interactive Programming
with Modules – LISP and Symbolic Computation, 91996, pp. 343–358.

